Уравнение Дира́ка — релятивистски инвариантное уравнение движения для биспинорного классического поля электрона, применимое также для описания других точечных фермионов со спином 1/2; установлено Полем Дираком в 1928 году.

Поляриза́ция волн — характеристика поперечных волн, описывающая поведение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны. В плоском пространстве определяет работу для вектора колеблющейся величины, который перпендикулярен направлению распространения волны.
Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.

Уравне́ния Ма́ксвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, эти уравнения образуют полную систему уравнений классической электродинамики, называемую иногда уравнениями Максвелла — Лоренца. Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее влияние не только на все области физики, непосредственно связанные с электромагнетизмом, но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму.
Уравнение Клейна — Гордона — релятивистская версия уравнения Шрёдингера:
,
Квазичастицы в графене обладают линейным законом дисперсии вблизи дираковских точек и их свойства полностью описываются уравнением Дирака. Сами дираковские точки находятся на краях зоны Бриллюэна, где электроны обладают большим волновым вектором. Если пренебречь процессами переброса между долинами, то этот большой вектор никак не влияет на транспорт в низкоэнергетическом приближении, поэтому волновой вектор, фигурирующий в уравнении Дирака, отсчитывают от дираковских точек и уравнение Дирака записывают для разных долин отдельно.
T-симме́три́я — симметрия уравнений, описывающих законы физики, по отношению к операции замены времени t на −t. В квантовой механике математически записывается, как равенство нулю коммутатора оператора Гамильтона и антиунитарного оператора обращения времени

Ква́нтовый эффе́кт Хо́лла в графене или необы́чный ква́нтовый эффе́кт Хо́лла — эффект квантования холловского сопротивления или проводимости двумерного электронного газа или двумерного дырочного газа в сильных магнитных полях в графене. Этот эффект был предсказан теоретически и подтверждён экспериментально в 2005 году.
Парадо́кс Кле́йна в графе́не — прохождение любых потенциальных барьеров без обратного рассеяния под прямым углом. Эффект связан с тем, что спектр носителей тока в графене линейный и квазичастицы подчиняются уравнению Дирака для графена. Эффект предсказан теоретически в 2006 году для прямоугольного барьера.
Оператор — линейное отображение в одной из областей физики — квантовой механике, которое действует на волновую функцию, являющуюся комплекснозначной функцией, дающей наиболее полное описание состояния системы. Операторы обозначаются большими латинскими буквами с циркумфлексом наверху:


Андреевское отражение — процесс отражения электрона, падающего из нормального металла на границу со сверхпроводником, при котором электрон превращается в дырку, меняет обе компоненты скорости на противоположные, а в сверхпроводник попадает два электрона. Названо по имени Александра Фёдоровича Андреева, теоретически предсказавшего такой тип отражения в 1964 году . В то же время существует зеркальное андреевское отражение, при котором дырка не меняет проекцию скорости на границу. Этот эффект предсказан Бинаккером в 2006 году.

В физике элементарных частиц майора́новский фермио́н, или фермио́н Майора́ны — фермион, который является своей собственной античастицей. Существование таких частиц было впервые рассмотрено итальянским физиком Этторе Майораной в 1937 году. В экспериментах с полупроводниковыми нанопроволоками наблюдались квазичастицы, обладающие свойствами майорановского фермиона. Экспериментальное обнаружение майорановских частиц как в физике высоких энергий, так и в области физики твёрдого тела приведёт к важным последствиям для науки в целом.
Спин-орбитальное взаимодействие — в квантовой физике взаимодействие между движущейся частицей и её собственным магнитным моментом, обусловленным спином частицы. Наиболее часто встречающимся примером такого взаимодействия является взаимодействие электрона, находящегося на одной из орбит в атоме, с собственным спином. Такое взаимодействие, в частности, приводит к возникновению так называемой тонкой структуры энергетического спектра электрона и расщеплению спектроскопических линий атома.
Физические свойства графена проистекают из электронных свойств атомов углерода и поэтому часто имеют нечто общее с остальными аллотропными модификациями углерода, которые были известны до него, такими как графит, алмаз, углеродные нанотрубки. Конечно, схожести больше с графитом, так как он состоит из графеновых слоёв, но без новых уникальных физических явлений и исследований других материалов и наработок физических методов анализа и теоретических подходов графен не привлёк бы специалистов из таких разных дисциплин как физика, химия, биология и физика элементарных частиц.
Атом гелия — это атом химического элемента гелия. Гелий состоит из двух электронов, связанных с ядром, содержащим два протона вместе с одним (3He) или двумя (4He) нейтронами, удерживаемыми сильным взаимодействием. В отличие от водорода, замкнутой формы решения уравнения Шрёдингера для атома гелия не найдено. Однако различные приближения, такие как метод Хартри — Фока, можно использовать для оценки энергии основного состояния и волновой функции атома.
Концептуальные программы в физике — принятые в физике наиболее общие математические модели. Различные области физики имеют различные программы для моделирования состояний физических систем.
Симметрии в квантовой механике — преобразования пространства-времени и частиц, которые оставляют неизменными уравнения квантовой механики. Рассматриваются во многих разделах квантовой механики, которые включают релятивистскую квантовую механику, квантовую теорию поля, стандартную модель и физику конденсированного состояния. В целом, симметрия в физике, законы инвариантности и сохранения являются основополагающими ограничениями для формулирования физических теорий и моделей. На практике это мощные методы решения задач и прогнозирования того, что может случиться. Хотя законы сохранения не всегда дают конечное решение проблемы, но они формируют правильные ограничения и наметки к решению множества задач.

Уравнения Баргмана — Вигнера — релятивистски инвариантные многокомпонентные спинорные уравнения движения свободных частиц c ненулевой массой и произвольным спином.
Релятивистская квантовая механика (РКМ) — раздел квантовой физики, в котором рассматриваются релятивистские квантовые законы движения микрочастиц в одночастичном приближении. Более обще, это любая ковариантная формулировка квантовой механики (КМ). Эта теория применима к массивным частицам, движущимися со всеми скоростями, вплоть до сравнимых со скоростью света c, и к безмассовым частицам. Теория применяется в физике высоких энергий, физике элементарных частиц и физике ускорителей, а также в атомной физике, квантовой химии и физике конденсированного состояния. Нерелятивистская квантовая механика в математической формулировке квантовой механики, применяется в контексте теории относительности Галилея, в частности, к квантованию уравнений классической механики путём замены динамических переменных операторами. Релятивистская квантовая механика — это квантовая механика, применяемая совместно со специальной теорией относительности (СТО). Хотя более ранние формулировки, такие как представления Шрёдингера и Гейзенберга, изначально были сформулированы в нерелятивистской форме, некоторые из них также учитывают СТО.