
Уравне́ния Ма́ксвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, эти уравнения образуют полную систему уравнений классической электродинамики, называемую иногда уравнениями Максвелла — Лоренца. Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее влияние не только на все области физики, непосредственно связанные с электромагнетизмом, но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму.
Эффект Шубникова — де Хааза назван в честь советского физика Л. В. Шубникова и нидерландского физика В. де Хааза, открывших его в 1930 году. Наблюдаемый эффект заключался в осцилляциях магнетосопротивления плёнок висмута при низких температурах. Позже эффект Шубникова — де Гааза наблюдали в многих других металлах и полупроводниках. Эффект Шубникова — де Гааза используется для определения тензора эффективной массы и формы поверхности Ферми в металлах и полупроводниках.

Зако́н Берну́лли устанавливает зависимость между скоростью стационарного потока жидкости и её давлением. Согласно этому закону, если вдоль линии тока давление жидкости повышается, то скорость течения убывает, и наоборот. Количественное выражение закона в виде интеграла Бернулли является результатом интегрирования уравнений гидродинамики идеальной жидкости.
Задача Римана о распаде произвольного разрыва — задача о построении аналитического решения нестационарных уравнений механики сплошных сред, в применении к распаду произвольного разрыва. Полностью решена в ограниченном круге частных случаев — для уравнений газовой динамики идеального газа и некоторых более точных приближений и уравнений теории мелкой воды. Решение для уравнений магнитной газовой динамики построимо, по всей видимости, вплоть до необходимости численного решения одного достаточно сложного обыкновенного дифференциального уравнения.
В квантовой физике золотое правило Ферми — это формула, которая использует временную теорию возмущений в нерелятивистской квантовой механике и описывает скорость перехода их одного собственного состояния энергии квантовой системы к группе собственных состояний энергии в непрерывном спектре (континууме) в результате слабого возмущения. Эта скорость перехода фактически не зависит от времени и пропорциональна силе связи между начальным и конечным состояниями системы, а также плотности состояний. Золотое правило Ферми также применимо, когда конечное состояние дискретно, то есть оно не является частью континуума, если в процессе имеет место некоторая декогеренция, например релаксация или столкновение атомов, или шум в возмущении, и в этом случае плотность состояний заменяется выражением, учитывающим конечное время жизни.
Вселе́нная Фри́дмана — одна из космологических моделей, удовлетворяющих полевым уравнениям общей теории относительности (ОТО), первая из нестационарных моделей Вселенной. Получена Александром Фридманом в 1922. Модель Фридмана описывает однородную изотропную в общем случае нестационарную Вселенную с веществом, обладающую положительной, нулевой или отрицательной постоянной кривизной. Эта работа учёного стала первым основным теоретическим развитием ОТО после работ Эйнштейна 1915—1917 гг.

Рассе́яние части́ц — изменение направления движения частиц в результате столкновений с другими частицами.
Космологические модели — модели, описывающие развитие Вселенной как целого.
Водородоподо́бный а́том или водородоподо́бный ио́н представляет собой любое атомное ядро, которое имеет один электрон и, следовательно, является изоэлектронным атому водорода. Эти ионы несут положительный заряд
, где
— зарядовое число ядра. Примерами водородоподобных ионов являются He+, Li2+, Be3+ и B4+. Поскольку водородоподобные ионы представляют собой двухчастичные системы, взаимодействие которых зависит только от расстояния между двумя частицами, их (нерелятивистское) уравнение Шредингера и (релятивистское) уравнение Дирака имеют решения в аналитической форме. Решения являются одноэлектронными функциями и называются водородоподобными атомными орбиталями.
Уда́рная адиабата, или адиаба́та Гюгонио́, адиабата Ра́нкина — Гюгонио́ — математическое соотношение, связывающее термодинамические величины до ударной волны и после. Таким образом, ударная адиабата не описывает сам процесс в ударной волне.
Метод Годунова — реализация схем сквозного счета, с помощью которых можно рассчитывать газодинамические течения с разрывами параметров внутри расчётной области. Эта схема предложена С. К. Годуновым в 1959 г. Метод Годунова — это вариант метода контрольного объёма. Потоки через боковые грани определяются из решения задачи о распаде произвольного разрыва. Поясним на примере.

Спонтанное излучение, или спонтанное испускание, — процесс самопроизвольного испускания электромагнитного излучения квантовыми системами при их переходе из возбуждённого состояния в стабильное.
Микроканонический ансамбль — статистический ансамбль макроскопической изолированной системы с постоянными значениями объёма V, числа частиц N и энергии E. Понятие микроканонического ансамбля является идеализацией, так как в действительности полностью изолированных систем не существует. В микроканоническом распределении Гиббса все микроскопические состояния, отвечающие данной энергии, равновероятны согласно эргодической гипотезе. Теорема Гиббса, доказанная автором, утверждает, что малую часть микроканонического ансамбля можно рассматривать в качестве канонического ансамбля.

Гравитацио́нный потенциа́л — скалярная функция координат и времени, достаточная для полного описания гравитационного поля в классической механике. Имеет размерность квадрата скорости, обычно обозначается буквой
. Гравитационный потенциал в данной точке пространства, задаваемой радиус-вектором
, численно равен работе, которую выполняют гравитационные силы при перемещении пробного тела единичной массы по произвольной траектории из данной точки в точку, где потенциал принят равным нулю. Гравитационный потенциал равен отношению потенциальной энергии
небольшого тела, помещённого в эту точку, к массе тела
. Как и потенциальная энергия, гравитационный потенциал всегда определяется с точностью до постоянного слагаемого, обычно (но не обязательно) подбираемого таким образом, чтобы потенциал на бесконечности оказался нулевым. Например, гравитационный потенциал на поверхности Земли, отсчитываемый от бесконечно удалённой точки (если пренебречь гравитацией Солнца, Галактики и других тел), отрицателен и равен −62,7·106 м2/с2 (половине квадрата второй космической скорости).

Уравне́ние Чандрасека́ра в астрофизике — безразмерная форма уравнения Пуассона для распределения плотности сферически-симметричной изотермической газовой сферы под действием собственной силы гравитации, названная по имени американского астрофизика Субраманьяна Чандрасекара. Уравнение имеет вид

Параметр Грюнайзена — безразмерный параметр, который описывает влияние изменения объёма кристаллической решётки на его вибрационные свойства и, как следствие, влияние изменения температуры на размер или динамику решётки. Параметр обычно обозначаемый γ назван в честь Эдуарда Грюнайзена. Под этим термином понимают одно термодинамическое свойство, которое является средневзвешенным средним значением многих отдельных параметров γi, входящих в первоначальную формулировку модели Грюнайзена в терминах фононных нелинейностей.
Проходя через материал, фононы могут рассеиваться по нескольким механизмам: фонон-фононное рассеяние переброса, рассеяние на примесях или дефектах кристаллической решётки, фонон-электронное рассеяние и рассеяние на границе образца. Каждый механизм рассеяния можно охарактеризовать скоростью релаксации 1/
, обратному соответствующему времени релаксации.

В математике кулоновская волновая функция — это решение уравнения для кулоновских функций, названного в честь Шарля Огюстена де Кулона. Кулоновские функции используются для описания поведения заряженных частиц в кулоновском потенциале и могут быть записаны в терминах конфлюэнтных гипергеометрических функций или функций Уиттекера комплексного аргумента.