Изомери́я — явление, заключающееся в существовании химических соединений — изомеров, — одинаковых по атомному составу и молекулярной массе, но различающихся по строению или расположению атомов в пространстве и, вследствие этого, по свойствам.
Химическая связь — взаимодействие атомов, обусловливающее устойчивость молекулы или кристалла как целого. Химическая связь определяется взаимодействием между заряженными частицами. Современное описание химической связи проводится на основе квантовой механики. Основные характеристики химической связи — прочность, длина, полярность, устойчивость.

Хими́ческое соедине́ние — сложное вещество, состоящее из химически связанных атомов двух или более элементов. Некоторые простые вещества также могут рассматриваться как химические соединения, если их молекулы состоят из атомов, соединённых ковалентной связью . Инертные (благородные) газы и атомарный водород нельзя считать химическими соединениями.

Карбони́лы мета́ллов, карбони́льные_ко́мплексы — координационные комплексы переходных металлов с монооксидом углерода, являющегося лигандом. Многие карбонилы металлов очень летучи.

Ко́мплексные соедине́ния или координацио́нные соедине́ния — это соединения, которые образуются в результате присоединения к данному иону, называемому комплексообразователем, нейтральных молекул или других ионов, называемых лигандами. Теория комплексных соединений была предложена в 1893 г. А. Вернером.
Лига́нд — атом, ион или молекула, связанные с другим атомом (акцептором) с помощью донорно-акцепторного взаимодействия. Понятие применяется в химии комплексных соединений, обозначая присоединенные к одному или нескольким центральным (комплексообразующим) атомам металла частицы.

Металлоорганические соединения (МОС) — органические соединения, в молекулах которых существует связь атома металла с атомом/атомами углерода. Цианиды, карбиды, а в некоторых случаях и карбонилы металлов, также содержащие связь металл—углерод, считают неорганическими соединениями. К металлоорганическим соединениям иногда относят органические соединения бора, кремния, фосфора, мышьяка, селена и теллура, поскольку строение и свойства органических соединений с участием этих элементов во многих аспектах сходны с химией родственных им металлорганических соединений алюминия, германия и др. ; однако более точным в этом случае является более общий термин элементорганические соединения, получивший распространение в России и странах бывшего СССР.

Свободные радикалы в химии — частицы, содержащие один или несколько неспаренных электронов на внешней электронной оболочке. Свободные радикалы бывают твёрдыми, жидкими и газообразными веществами и могут существовать от очень короткого до очень долгого времени. Радикалы могут быть не только нейтральными, но и ионными, а также иметь более одного неспаренного электрона. Свободные радикалы обладают парамагнитными свойствами и являются очень реакционноспособными частицами.

Аромати́чность — особое свойство некоторых химических соединений, благодаря которому сопряжённое кольцо ненасыщенных связей проявляет аномально высокую стабильность; большую чем та, которую можно было бы ожидать только при одном сопряжении.
Мезомерный эффект — смещение электронной плотности химической связи по π-связям. Объясняется теорией химического резонанса.

Электронная теория химической связи была предложена и развита американским физикохимиком Льюисом Г.Н в 1912—1916 гг. Ковалентная химическая связь, по Льюису, образуется за счёт обобществления пары электронов, то есть электронная плотность распределяется между двумя атомами, в противовес господствующей в то время теории, будто один из связанных атомов несёт положительный, а другой отрицательный заряд. Льюис также предложил обозначать электроны точками у символа химического элемента. Электронная теория химической связи включает идею Льюиса, что завершённый внешний электронный слой атома содержит восемь электронов.

Металлоцены — органические соединения, образованные переходным металлом и циклопентадиеном.
Гафнийорганические соединения — соединения, в которых атом гафния соединён непосредственно с атомом углерода органических функциональных групп.
Основания — химические соединения, способные образовывать ковалентную связь с протоном либо с вакантной орбиталью другого химического соединения. В узком смысле, под основаниями понимают осно́вные гидроксиды — сложные вещества, при диссоциации которых в водных растворах отщепляется только один вид анионов — гидроксид-ионы OH−.
Титанорганические соединения — соединения, в которых атом титана соединён непосредственно с атомом углерода органических функциональных групп.
До́норно-акце́пторное взаимоде́йствие — перенос заряда между молекулами донора и акцептора без образования между ними химической связи ; или передача неподеленной электронной пары от донора к акцептору, приводящая к образованию связи.
Электрофил — реагент или молекула, имеющая свободную орбиталь на внешнем электронном уровне. Как правило такие реагенты являются акцепторами пары электронов при образовании химической связи с нуклеофилом, являющимся донором электронной пары и вытесняет уходящую группу в виде положительно заряженной частицы. Все электрофилы являются кислотами Льюиса.
Урани́л — ион с химической формулой UO2+
2, является оксикатионом урана в степени окисления +6. Имеет линейное строение, молекула образована двумя тройными связями между атомом урана и атомами кислорода. Уранил входит в состав большого числа солей и комплексных соединений. Образование комплексов происходит преимущественно с кислородсодержащими лигандами, атомы кислорода которых обладают донорными свойствами по отношению к центральному катиону UO2+
2. В координационную сферу комплексов уранила могут входить четыре и более лигандов, располагающихся в экваториальной плоскости вокруг центрального катиона. Комплексы уранила имеют важное значение при извлечении урана из его руд и в производстве ядерного топлива.
Сопряжение связей — это явление выравнивания связей и зарядов в реальной молекуле по сравнению с несуществующей идеальной структурой этой молекулы. Происходит из-за взаимодействия между собой электронных систем атомов. За счёт сопряжения происходит изменение длины кратных и одинарных связей, что в свою очередь вызывает геометрическое изменение строения молекулы. Главным признаком сопряжения является распределение электронной плотности по всей системе. Системы, в которых происходит сопряжение, называются сопряжёнными системами, которые делятся на открытые и циклические. Чтобы сопряжение произошло, необходимо, чтобы все электронные системы находились в одной плоскости для взаимодействия друг с другом, и для образования плоского σ-скелета. Если этого не происходит из-за структурного строения молекулы, то говорят о пространственных препятствиях сопряжению.
Правило 18 электронов — это эмпирическое химическое правило, используемое для предсказания формул стабильных комплексов переходных металлов для металлоорганических соединений. Когда комплекс с металлом имеет 18 валентных электронов, он в большинстве случаев является стабильным. Можно сказать, что он достиг электронной конфигурации благородного газа в этом периоде. Это правило не применяется для комплексов непереходных металлов, а некоторые комплексы переходных металлов могут нарушать правило из-за отклонений, связанных с реакционной способностью. Правило было впервые предложено американским химиком Ирвингом Ленгмюром в 1921 году.