
Бактериофа́ги, или фа́ги (от др.-греч. φᾰ́γω — «пожираю»), — вирусы, заражающие бактериальные клетки. Ранее бактериофагами называли и вирусы архей, однако в настоящее время этот термин принято относить исключительно к бактериальным вирусам. Бактериофаги, как и любые иные вирусы, размножаются внутри клетки хозяина. Высвобождение потомства большинства бактериофагов происходит путём лизиса инфицированной бактериальной клетки, однако при размножении бактериофагов некоторых групп, например, нитчатых фагов, выход вирусных частиц происходит без разрушения клетки, которая сохраняет свою жизнеспособность. Вирусная частица или вирион бактериофага состоит из оболочки, как правило белковой, и генетического материала — одноцепочечной или двуцепочечной нуклеиновой кислоты (ДНК или, реже, РНК). Общая численность бактериофагов в большинстве природных местообитаний примерно равна численности бактерий или превышает ее в 2—10 раз, при этом общее количество фаговых частиц в биосфере Земли составляет 1030—1032 частиц. Бактериофаги активно участвуют в круговороте химических веществ и энергии, оказывают заметное влияние на состав, динамику и активность микробных сообществ, влияют на эволюцию микробов, на их взаимодействия между собой и с многоклеточными организмами и даже участвуют в контроле экспрессии собственных генов микроорганизмов. У бактерий существует также большое число генетических элементов и кодируемых ими молекулярных структур, имеющих общее происхождение с бактериофагами, «приспособленных» микробами для тех или иных собственных нужд: дефектные профаги, бактериоцины типов R и F, AFP-профаги (от англ. antifeeding prophage — профаги, препятствующие питанию), системы секреции VI типа (T6SS), сократимые системы, ассоциированные с метаморфозом (MAC), агенты переноса генов (GTA — gene tranfer agents) и другие. Бактериофаги, а также антивирусные (противофаговые) системы бактерий послужили источником большей части инструментария современной генетической инженерии и ряда других технологий.

Плазми́ды — небольшие молекулы ДНК, физически обособленные от хромосом и способные к автономной репликации. Главным образом плазмиды встречаются у бактерий, а также у некоторых архей и эукариот. Чаще всего плазмиды представляют собой двухцепочечные кольцевые молекулы. Несмотря на способность к размножению, плазмиды, как и вирусы, не рассматриваются в качестве живых организмов.

Ретрови́русы — семейство РНК-содержащих вирусов, заражающих преимущественно позвоночных. Наиболее известный и активно изучаемый представитель — вирус иммунодефицита человека.

Рекомбинация — перераспределение генетического материала путём разрыва и соединения разных молекул, приводящее к появлению новых комбинаций генов или других нуклеотидных последовательностей. В широком смысле слова включает в себя не только рекомбинацию между молекулами ДНК, но и перекомбинацию (сортировку) генетического материала на уровне целых хромосом или ядер, а также обмен плазмидами между клетками.
F-плазми́да, или F-фактор — это конъюгативная эписома клеток Escherichia coli K-12, то есть клеточный элемент, необходимый для одного из типов полового процесса бактерий — конъюгации.
Трансду́кция — процесс переноса ДНК между клетками при помощи вирусов. Примером трансдукции является перенос бактериальной ДНК из одной клетки в другую бактериофагом. Общая трансдукция используется в генетике бактерий для картирования генома. К трансдукции способны как умеренные фаги, так и вирулентные, последние, однако, уничтожают популяцию бактерий, поэтому трансдукция с их помощью не имеет большого значения ни в природе, ни при проведении исследований.
Трансформа́ция — процесс поглощения бактериальной клеткой молекулы ДНК из внешней среды. Для того, чтобы быть способной к трансформации, клетка должна быть компетентной, то есть молекулы ДНК должны иметь возможность проникнуть в неё через клеточные покровы. Трансформация активно используется в молекулярной биологии и генетической инженерии.
Конъюга́ция — однонаправленный перенос части генетического материала при непосредственном контакте двух бактериальных клеток. Открыт в 1946 году Джошуа Ледербергом и Эдвардом Татумом. Явление конъюгации было открыто и хорошо изучено у кишечной палочки, но в дальнейшем конъюгация была описана у множества как грамположительных, так и грамотрицательных бактерий. Посредством конъюгации бактерии обмениваются генетическим материалом, поддерживая своё генетическое разнообразие.
Эписомы — генетические элементы бактерий, способные существовать как в интегрированном с бактериальными хромосомами состоянии, так и в виде автономных плазмид.

Эстер Мириам Циммер Ледерберг — выдающийся американский микробиолог, иммунолог и пионер генетики бактерий. Открытие фага лямбда, связи между трансдукцией и лизогенией фага лямбда, разработка метода реплик и открытие фактора F размножения бактерий — это её существенные вклады в науку.
Сайт-специфическая рекомбинация — тип генетической рекомбинации, в которой при обмене цепей ДНК происходит реакция между специфическими сайтами. Перестановка сегментов ДНК происходит путем распознавания и связывания коротких последовательностей ДНК (сайтов), в которых специальные ферменты расщепляют, переставляют и снова соединяют цепи ДНК. Для одних систем рекомбинации достаточно только фермента рекомбиназы, другие же требуют наличия дополнительных факторов. В природе сайт-специфическая рекомбинация случается при интеграции вируса в геном.
Искусственная бактериальная хромосома — векторная система на основе F-плазмиды E. coli, участков cos фага лямбда и loxP фага Р1, используемая для клонирования длинных последовательностей ДНК. F-плазмида кодирует гены, регулирующие репликацию и контролирующие копийность. По участку loxP плазмидная ДНК может быть расщеплена белком Cre фага Р1, по cos-участку — соответствующим ферментом фага лямбда. Схожая векторная система под названием PAC была сделана на основе бактериальной P1-плазмиды из ДНК фага P1.
Рекомбинантная структура — гибридная нуклеиновая кислота или белок, полученные в результате объединения in vitro чужеродных фрагментов и содержащие новые сочетания последовательностей нуклеотидов или аминокислот соответственно.

Лити́ческий ци́кл, или лити́ческая инфе́кция — тип жизненного цикла бактериофагов, при котором вскоре после заражения бактериальной клетки вирус воспроизводит себя и далее убивает клетку-хозяина. В ходе литического цикла геномная ДНК фага проникает в клетку-хозяина, где происходит транскрипция вирусных генов и репликация его генетического материала, кроме того, синтезируются белки капсида и прочие вирусные белки, в том числе входящие в состав зрелого вириона. В конце концов наступает лизис клетки, откуда выходят новообразованные вирусные частицы.

Duplodnaviria (лат.) — реалм ДНК-содержащих вирусов, по состоянию на 2023 год включающий единственное царство Heunggongvirae. Выделение данного реалма было предложено в 2019 году.

Zobellviridae — семейство преимущественно морских бактериофагов с подовирусной морфологией.

Finnlakeviridae (лат.) — семейство ДНК-содержащих бактериофагов неясного систематического положения. По состоянию на 2022 год в семейство входит единственный род Finnlakevirus, представленный единственным видом Flavobacterium phage FLiP. Этот вирус был описан в 2010 году и стал первым известным вирусом с геномом в виде одноцепочечной ДНК (оцДНК), который имеет внутреннюю мембрану. Длина генома Finnlakevirus составляет около 9,2 тысяч нуклеотидов. По геномной последовательности Finnlakevirus не демонстрирует сходства с какими-либо другими описанными вирусами.
Фаг P1 — умеренный бактериофаг, поражающий кишечную палочку и некоторые другие бактерии. При прохождении лизогенного цикла геном фага существует в виде плазмиды в бактерии, в отличие от других фагов, которые интегрируются в ДНК хозяина. P1 имеет икосаэдрическую головку, содержащую ДНК, прикреплённую к сократительному хвосту с шестью хвостовыми волокнами. Фаг P1 привлёк интерес исследователей, потому что его можно использовать для переноса ДНК из одной бактериальной клетки в другую в процессе, известном как трансдукция. При репликации во время своего литического цикла он захватывает фрагменты хромосомы хозяина. Если полученные вирусные частицы используются для заражения другого хозяина, захваченные фрагменты ДНК могут быть интегрированы в геном нового хозяина. Этот метод генной инженерии in vivo широко использовался в течение многих лет и используется до сих пор, хотя и в меньшей степени. P1 также можно использовать для создания производного от P1 вектора клонирования искусственной хромосомы, который может нести относительно большие фрагменты ДНК. P1 кодирует сайт-специфическую рекомбиназу Cre, которая широко используется для проведения клеточно-специфичной или специфичной по времени рекомбинации ДНК путем фланкирования ДНК-мишени сайтами loxP.
Фосмиды — это разновидность плазмид. Фосмиды, в отличие от космид, основаны на бактериальной F-плазмиде. Вектор клонирования ограничен, так как хозяин может содержать только одну молекулу фосмид. Фосмиды могут содержать вставки ДНК размером до 40 т.п.н.; часто источником вставки является случайная геномная ДНК. Фосмидную библиотеку готовят путем выделения геномной ДНК из организма-мишени и её клонирования в фосмидный вектор. Смесь для лигирования затем упаковывается в фаговые частицы, и ДНК трансфицируется в бактериального хозяина. Бактериальные клоны размножают библиотеку фосмида. Низкое число копий обеспечивает более высокую стабильность, чем векторы с относительно большим числом копий, включая космиды. Фосмиды могут быть полезны для создания стабильных библиотек из сложных геномов. Фосмиды обладают высокой структурной стабильностью, и было обнаружено, что они эффективно поддерживают ДНК человека даже после 100 поколений роста бактерий. Фосмидные клоны использовались для оценки точности общедоступной последовательности генома человека.
Vequintavirus (лат.) — род бактериофагов с миовирусной морфологией.