
Оптический или световой микроско́п — оптический прибор для получения увеличенных изображений объектов, невидимых невооружённым глазом.

О́птика — раздел физики, изучающий поведение и свойства света, в том числе его взаимодействие с веществом и создание инструментов, которые его используют или детектируют. Оптика обычно описывает поведение видимого, ультрафиолетового и инфракрасного излучения. Поскольку свет представляет собой электромагнитную волну, другие формы электромагнитного излучения, такие как рентгеновские лучи, микроволны и радиоволны, обладают аналогичными свойствами.

Просветле́ние о́птики — технология обработки поверхности линз, призм и других оптических деталей для снижения отражения света от оптических поверхностей, граничащих с воздухом. Это позволяет увеличить светопропускание оптической системы и повысить контрастность изображения за счёт снижения мешающих паразитных отражений в оптической системе.

Дифра́кция во́лн — явление огибания волнами препятствий, в широком смысле любое отклонение от законов геометрической оптики при распространении волн. Она представляет собой универсальное волновое явление и характеризуется одними и теми же законами при наблюдении волновых полей разной природы.

Разреше́ние — способность оптического прибора воспроизводить изображение близко расположенных объектов.

Гологра́фия — метод регистрации информации, основанный на интерференции волн. Опти́ческая гологра́фия — разновидность голографии, в которой записывается световое поле, создаваемое оптическим излучением. Это осуществимо при регистрации картины стоячих волн, образованных в результате интерференции между когерентными пучками света, излучённого источником и отражённого от объекта. Изображение, получаемое с помощью голографии, называется гологра́мма, и считается наиболее точным автостереоскопическим воспроизведением зрительного впечатления, производимого снятыми объектами. При этом сохраняется ощущение глубины пространства и многоракурсность, а изображение выглядит, как вид на снятый предмет через окно, которым служит голограмма.

Атомно-силовой микроскоп — сканирующий зондовый микроскоп высокого разрешения. Нужен для определения рельефа поверхности с разрешением от десятков ангстрем вплоть до атомарного.

Фриц Цернике — голландский физик, лауреат Нобелевской премии по физике 1953 года «За обоснование фазово-контрастного метода, особенно за изобретение фазово-контрастного микроскопа».

Рентге́новский микроско́п — устройство для исследования очень малых объектов, размеры которых сопоставимы с длиной рентгеновской волны. Основан на использовании рентгеновского излучения с длиной волны от 0,01 до 10 нанометров. В длинноволновой части диапазона наиболее часто используется участок длин волн 2,3 — 4,4 нм, соответствующий т. н. «окну прозрачности воды», в котором проводятся исследования биологических образцов. В коротковолновой части диапазона рентгеновские микроскопы применяют для исследований структуры различных конструкционных материалов, содержащих элементы с большим атомным номером.
Дифференциальная интерференционно-контрастная микроскопия — световая оптическая микроскопия, используемая для создания контраста в неокрашенных прозрачных образцах. ДИК-микроскоп позволяет определить оптическую плотность исследуемого объекта, используя интерференцию света, и таким образом увидеть недоступные глазу детали. Относительно сложная оптическая система позволяет создать чёрно-белую картину образца на сером фоне. Это изображение подобно тому, которое можно получить с помощью фазово-контрастного микроскопа, но в нём отсутствует дифракционное гало.

Интерферометрия — это семейство методов, в которых складываются волны, обычно электромагнитные, вызывая явление интерференции, которое используется для извлечения информации. Интерферометрия — это важный метод исследования в области астрономии, волоконной оптики, инженерной метрологии, оптической метрологии, океанографии, сейсмологии, спектроскопии, квантовой механики, ядерной физики и физики элементарных частиц, физики плазмы, дистанционного зондирования, биомолекулярных взаимодействий, профилирование поверхности, микрогидродинамике, измерения механических напряжений/деформаций, велоциметрии и оптометрии.
Конфокальный микроскоп — оптический микроскоп, обладающий значительным контрастом по сравнению с обычным микроскопом, что достигается использованием апертуры, размещённой в плоскости изображения и ограничивающей поток фонового рассеянного света..
В 1953 году были различные научные и технологические события, некоторые из которых представлены ниже.

Темнопо́льная микроскопи́я — вид оптической микроскопии, в которой контраст изображения увеличивают за счет регистрации только света, рассеянного изучаемым образцом. При использовании метода темного поля регистрируются даже незначительные различия в преломляющей способности участков препарата. Основы метода разработаны Р. Зигмонди в 1906 году.

История создания и совершенствования конструкции микроскопа охватывает более 400 лет и включает следующие основные этапы:
- 1590 — голландские изготовители очков Ханс Янсен и его сын Захарий Янсен, по свидетельству своих современников Пьера Бореля и Вильгельма Бориля, изобрели составной оптический микроскоп.
- 1609 — Галилео Галилей изобретает составной микроскоп с выпуклой и вогнутой линзами.
- 1612 — Галилей представляет оккиолино польскому королю Сигизмунду Третьему.
- 1619 — Корнелиус Дреббель презентует в Лондоне составной микроскоп с двумя выпуклыми линзами.
- 1622 — Дреббель показывает своё изобретение в Риме.
- 1624 — Галилей показывает свою оккиолино принцу Федерику, основателю Национальной академии деи Линчеи.
- 1625 — Джованни Фабер, друг Галилея из Академии рысеглазых, предлагает для нового изобретения термин микроскоп по аналогии со словом телескоп.
- 1664 — Роберт Гук публикует свой труд «Микрография», собрание биологических гравюр микромира, где вводит термин клетка для структур, которые им были обнаружены в пробковой коре. Книга, вышедшая в сентябре 1664, оказала значительное влияние на популяризацию микроскопии, в основном из-за своих впечатляющих иллюстраций.

Многочлены Цернике — последовательность многочленов, которые являются ортогональными на единичном круге. Названы в честь лауреата Нобелевской премии, оптика и изобретателя фазово-контрастного микроскопа Фрица Цернике. Они играют важную роль в оптике.
Низково́льтный электро́нный микроско́п (LVEM) — электронный микроскоп, работающий при низких ускоряющих напряжений электронов — в несколько киловольт или даже ниже. Несмотря на то, что низковольтный электронный микроскоп вряд ли сможет когда-нибудь полностью заменить традиционный просвечивающий электронный микроскоп, он полезен во многих практических приложениях.
Эндомикроскопия — метод получения гистологического изображения тканей и внутренних органов человека в режиме реального времени. Как правило, метод основан на конфокальной флуоресцентной микроскопии. Но также под эндоскопию могут быть адаптированы мультифотонная микроскопия и оптическая когерентная томография. Имеющиеся в продаже клинические эндомикроскопы могут иметь разрешение порядка 1 мкм и поле зрения в несколько сотен мкм, кроме того, они совместимы с флюорофором, который возбуждается лазером с длиной волны 488 нм. Основными сферами применения метода в настоящее время являются изображение желудочно-кишечного тракта, в частности, для диагностирования и описания характера синдрома Барретта, кисты поджелудочной железы и колоректальных поражений.

Функция рассеяния точки описывает картину, получаемую системой формирования изображения при наблюдении точечного источника или точечного объекта. Является частным случаем импульсной переходной функции для сфокусированной оптической системы. Во многих ситуациях ФРТ имеет вид вытянутого пятна, накладывающегося на изображение наблюдаемого объекта. Практически ФРТ является пространственной версией частотно-контрастной характеристики. Понятие функции рассеяния точки успешно применяется в оптике Фурье, астрофотографии, медицинской визуализации, электронной микроскопии и других методах получения изображений, таких как трёхмерная микроскопия или флуоресцентная микроскопия. Степень рассеяния точечного объекта является мерой качества системы формирования изображений. В некогерентных системах, таких как флуоресцентные и оптические микроскопы а также телескопы, процесс формирования изображения линеен по мощности и описывается теорией линейных систем. Это означает, что когда два объекта А и Б отображаются одновременно, результирующее изображение эквивалентно сумме изображений этих объектов, полученных независимо. Другими словами, изображение объекта А не влияет на изображение объекта Б, и наоборот, из-за того, что фотоны не взаимодействуют друг с другом. Таким образом, изображение сложных объектов может быть представлено как свёртка реального объекта и ФРТ. Однако, когда обнаруженный свет когерентен, изображение формируется линейно в поле комплексных значений. В этом случает запись изображения может привести к утрате некоторых его частей и другим нелинейным эффектам.