Меха́ника — раздел физики, наука, изучающая движение материальных тел и взаимодействие между ними; при этом движением в механике называют изменение во времени взаимного положения тел или их частей в пространстве.
Класси́ческая меха́ника — вид механики, основанный на законах Ньютона и принципе относительности Галилея. Поэтому её часто называют «нью́тоновой меха́никой».
Термодина́мика — раздел физики, изучающий наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах.

Электродина́мика — раздел физики, изучающий электромагнитное поле в наиболее общем случае и его взаимодействие с телами, имеющими электрический заряд. Предмет электродинамики включает связь электрических и магнитных явлений, электромагнитное излучение, электрический ток и его взаимодействие с электромагнитным полем. Любое электрическое и магнитное взаимодействие между заряженными телами рассматривается в современной физике как осуществляющееся посредством электромагнитного поля, и, следовательно, также является предметом электродинамики.

Электри́ческий заря́д — физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии.
Си́ла — физическая векторная величина, являющаяся мерой воздействия на данное тело со стороны других тел или полей. Приложение силы обусловливает изменение скорости тела или появление деформаций и механических напряжений. Деформация может возникать как в самом теле, так и в фиксирующих его объектах — например, пружинах.
И́мпульс — векторная физическая величина, являющаяся мерой механического движения тела.

Магни́тное по́ле — поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения; магнитная составляющая электромагнитного поля.

Электромагни́тное взаимоде́йствие или электромагнетизм — одно из четырёх фундаментальных взаимодействий. Существует между частицами, обладающими электрическим зарядом. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля.
Адиабати́ческий, или адиаба́тный проце́сс — термодинамический процесс в макроскопической системе, при котором система не обменивается теплотой с окружающим пространством. Серьёзное исследование адиабатических процессов началось в XVIII веке. В целом термин «адиабатический» в разных областях науки всегда подразумевает сохранение неизменным какого-то параметра. Так в квантовой химии, электронно-адиабатический процесс — это процесс, в котором не изменяется квантовое число электронного состояния. Например, молекула всегда остаётся в первом возбуждённом состоянии вне зависимости от изменения положения атомных ядер. Соответственно неадиабатическим называется процесс, в котором происходит изменение какого-то важного параметра.
Физи́ческое по́ле — форма материи, физическая система, обладающая бесконечным количеством степеней свободы. Самыми ранними примерами физических полей служат электромагнитное и гравитационные поля. Математически задаётся набором чисел в каждой точке пространства-времени и может быть представлено в виде скаляра, вектора, тензора, спинора или некоторой совокупностью таких чисел. Величина, через которую можно узнать обо всех интересующих нас свойствах поля, называется полевой функцией. Она описывает все физические проявления поля. Динамика физического поля подчиняется динамическим уравнениям. В частности, для электромагнитного поля — это уравнения Максвелла, а для гравитационного поля — уравнения Эйнштейна. В современном представлении квантованные физические поля представляют собой фундаментальное понятие, с помощью которого описываются известные взаимодействия и превращения элементарных частиц.

Электромагни́тное по́ле — фундаментальное физическое поле, взаимодействующее с электрически заряженными телами, а также с телами, имеющими собственные дипольные и мультипольные электрические и магнитные моменты. Представляет собой совокупность электрического и магнитного полей, которые могут, при определённых условиях, порождать друг друга, а по сути являются одной сущностью, формализуемой через тензор электромагнитного поля.
Второ́е нача́ло термодина́мики устанавливает существование энтропии как функции состояния термодинамической системы и вводит понятие абсолютной термодинамической температуры, то есть «второе начало представляет собой закон об энтропии» и её свойствах. В изолированной системе энтропия либо остаётся неизменной, либо возрастает, достигая максимума при установлении термодинамического равновесия. Встречающиеся в литературе различные формулировки второго начала термодинамики являются частными следствиями закона возрастания энтропии.
Внутренняя энергия термодинамической системы может изменяться двумя способами: посредством совершения работы над системой и посредством теплообмена с окружающей средой. Энергия, которую получает или теряет система (тело) в процессе теплообмена с окружающей средой, называется коли́чеством теплоты́ или просто теплотой. Теплота — это одна из основных термодинамических величин в классической феноменологической термодинамике. Количество теплоты входит в стандартные математические формулировки первого и второго начал термодинамики.

Термодинами́ческая систе́ма — физическое тело (совокупность тел), способное (способных) обмениваться с другими телами (между собой) энергией и (или) веществом; выделяемая (реально или мысленно) для изучения макроскопическая физическая система, состоящая из большого числа частиц и не требующая для своего описания привлечения микроскопических характеристик отдельных частиц, «часть Вселенной, которую мы выделяем для исследования». Единицей измерения числа частиц в термодинамической системе обычно служит число Авогадро (примерно 6·1023 частиц на моль вещества), дающее представление, о величинах какого порядка идёт речь. Ограничения на природу материальных частиц, образующих термодинамическую систему, не накладываются: это могут быть атомы, молекулы, электроны, ионы, фотоны и т. д.. Любой земной объект, видимый невооружённым глазом или с помощью оптических приборов (микроскопы, зрительные трубы и т. п.), можно отнести к термодинамическим системам: «Термодинамика занимается изучением макроскопических систем, пространственные размеры которых и время существования достаточны для проведения нормальных процессов измерения». Условно к макроскопическим системам относят объекты с размерами от 10−7 м (100 нм) до 1012 м.
Изолированная система (термодинамика) — термодинамическая система, которая не обменивается с окружающей средой ни веществом, ни энергией. В термодинамике постулируется, что изолированная система постепенно приходит в состояние термодинамического равновесия, из которого самопроизвольно выйти не может.

Техни́ческая термодина́мика — раздел термодинамики, занимающийся приложениями законов термодинамики в теплоэнергетике и теплотехнике. В технической термодинамике рассматривают:
- технические приложения основных принципов термодинамики к процессам преобразования теплоты в работу или, наоборот, работы в теплоту в тепловых машинах — двигателях, турбинах, компрессорах, холодильниках и т. д.; рассматриваются теоретические основы работы тепловых машин и оценки эффективности их рабочих процессов.
- методы прямого преобразования теплоты в электрическую энергию;
- процессы теплообмена ;
- теплотехнические свойства веществ.
Взаимодействие — философская категория, отражающая процессы воздействия объектов (субъектов) друг на друга, их изменения, взаимную обусловленность и порождение одним объектом других.
Замкнутая система (механика) — система тел, находящаяся на столь большом расстоянии от всех остальных тел Вселенной, что можно пренебречь их воздействием на тела рассматриваемой системы. Тела, входящие в замкнутую или изолированную систему, могут взаимодействовать только между собой и не могут взаимодействовать со всеми остальными телами Вселенной. Понятие изолированной системы применяется не только в классической, но и в квантовой механике.