Кинема́тика точки — раздел кинематики, изучающий математическое описание движения материальных точек. Основной задачей кинематики является описание движения при помощи математического аппарата без выяснения причин, вызывающих это движение.
Второ́й зако́н Нью́то́на — дифференциальный закон механического движения, описывающий зависимость ускорения тела от равнодействующей всех приложенных к телу сил и массы тела. Один из трёх законов Ньютона. Основной закон динамики.
Моме́нт си́лы — векторная физическая величина, характеризующая действие силы на механический объект, которое может вызвать его вращательное движение. Определяется как векторное произведение радиус-вектора точки приложения силы
и вектора силы
. Моменты сил, образующиеся в разных условиях, в технике могут иметь названия: кру́тящий момент, враща́тельный момент, вертя́щий момент, враща́ющий момент, скру́чивающий момент.
Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.

Теоре́ма Нётер или первая теорема Нётер утверждает, что каждой дифференцируемой симметрии действия для физической системы с консервативными силами соответствует закон сохранения. Теорема была доказана математиком Эмми Нётер в 1915 году и опубликована в 1918 году. Действие для физической системы представляет собой интеграл по времени функции Лагранжа, из которого можно определить поведение системы согласно принципу наименьшего действия. Эта теорема применима только к непрерывным и гладким симметриям над физическим пространством.

Зако́н Берну́лли устанавливает зависимость между скоростью стационарного потока жидкости и её давлением. Согласно этому закону, если вдоль линии тока давление жидкости повышается, то скорость течения убывает, и наоборот. Количественное выражение закона в виде интеграла Бернулли является результатом интегрирования уравнений гидродинамики идеальной жидкости.
Лагранжева механика — формулировка классической механики, введённая Луи Лагранжем в 1788 году. В лагранжевой механике траектория объекта получается при помощи отыскания пути, который минимизирует действие — интеграл от функции Лагранжа по времени. Функция Лагранжа для классической механики вводится в виде разности между кинетической энергией и потенциальной энергией.
Угловое ускорение — псевдовекторная физическая величина, равная первой производной от псевдовектора угловой скорости по времени

В классической механике, задача двух тел состоит в том, чтобы определить движение двух материальных точек, которые взаимодействуют только друг с другом. Распространённые примеры включают спутник, обращающийся вокруг планеты, планета, обращающаяся вокруг звезды, две звезды, обращающиеся вокруг друг друга, и классический электрон, движущийся вокруг атомного ядра.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.

Цилиндрической системой координат называют трёхмерную систему координат, являющуюся расширением полярной системы координат путём добавления третьей координаты, которая задаёт высоту точки над плоскостью.
Вынужденные колебания — колебания, происходящие под воздействием внешних периодических сил.
Задача Кеплера вообще представляет собой проблему отыскания движения двух сферически-симметричных тел, взаимодействующих гравитационно. В классической теории тяготения решение этой проблемы было найдено самим Исааком Ньютоном: оказалось, что тела будут двигаться по коническим сечениям, в зависимости от начальных условий — по эллипсам, параболам или гиперболам. В рамках общей теории относительности (ОТО) с пуристической точки зрения эта задача представляется плохо поставленной, так как модель абсолютно твёрдого тела невозможна в релятивистской физике, а не абсолютно твёрдые тела не будут при взаимодействии сферически-симметричными. Другой подход включает переход к точечным телам, правомерный в ньютоновской физике, но вызывающий проблемы в ОТО. Помимо этого, кроме положений и скоростей тел необходимо задать также и начальное гравитационное поле (метрику) во всём пространстве — проблема начальных условий в ОТО. В силу указанных причин точного аналитического решения задачи Кеплера в ОТО не существует, но есть комплекс методов, позволяющих рассчитать поведение тел в рамках данной задачи с необходимой точностью: приближение пробного тела, постньютоновский формализм, численная относительность.

Гравитацио́нный потенциа́л — скалярная функция координат и времени, достаточная для полного описания гравитационного поля в классической механике. Имеет размерность квадрата скорости, обычно обозначается буквой
. Гравитационный потенциал в данной точке пространства, задаваемой радиус-вектором
, численно равен работе, которую выполняют гравитационные силы при перемещении пробного тела единичной массы по произвольной траектории из данной точки в точку, где потенциал принят равным нулю. Гравитационный потенциал равен отношению потенциальной энергии
небольшого тела, помещённого в эту точку, к массе тела
. Как и потенциальная энергия, гравитационный потенциал всегда определяется с точностью до постоянного слагаемого, обычно (но не обязательно) подбираемого таким образом, чтобы потенциал на бесконечности оказался нулевым. Например, гравитационный потенциал на поверхности Земли, отсчитываемый от бесконечно удалённой точки (если пренебречь гравитацией Солнца, Галактики и других тел), отрицателен и равен −62,7·106 м2/с2 (половине квадрата второй космической скорости).
Обобщённые координаты — переменные состояния системы, описывающие конфигурацию динамической системы относительно некоторой эталонной конфигурации в аналитической механике, а конкретно исследовании динамики твёрдых тел в системе многих тел. Эти переменные должны однозначно определять конфигурацию системы относительно эталонной конфигурации. Обобщённые скорости — производные по времени обобщённых координат системы.
Динамика точки — раздел динамики, изучающий причины изменения движения материальных точек, то есть тел, характерными размерами которых на масштабах размеров задачи можно пренебречь.
В аналитической механике и квантовой теории поля минимальная связь относится к взаимодействию между полями, которая включает в себя только распределение заряда, а не высшие мультипольные моменты распределения заряда. Эта минимальная связь отличается, например, от взаимодействия Паули, которая включает магнитный момент электрона непосредственно в лагранжиан.