
А́рка — тип архитектурной конструкции, дугообразное перекрытие проёма — пространства между двумя опорами — колоннами, пилонами. Арка, продолжающаяся в глубину, образует свод. Таким образом арка становится «направляющей» сводчатой конструкции. В истории архитектуры известны полуциркульные, стрельчатые, коробовые, возвышенные, перспективные, уплощённые, ланцетовидные, трёхлопастные и многолопастные, подковообразные, килевидные арки.

Ли́нза — деталь из прозрачного однородного материала, имеющая две преломляющие полированные поверхности, например, обе сферические или же одну плоскую, а другую — сферическую. В настоящее время всё чаще применяются и «асферические линзы», форма поверхности которых отличается от сферы. В качестве материала линз обычно используются оптические материалы, такие как стекло, оптическое стекло, кристаллы, оптически прозрачные пластмассы и другие материалы. Существуют и инфракрасные линзы, изготовленные из материала, прозрачного для инфракрасного излучения.

Механи́ческая жёсткость — способность твёрдого тела, конструкции или её элементов сопротивляться деформации от приложенного усилия вдоль выбранного направления в заданной системе координат.
Конформное отображение — непрерывное отображение, сохраняющее углы между кривыми, а значит и форму бесконечно малых фигур.
Дифференциа́льная геоме́трия кривы́х — раздел дифференциальной геометрии, который занимается исследованием гладких пространственных и плоских кривых в евклидовом пространстве аналитическими методами.
Кривизна́ — собирательное название ряда характеристик, описывающих отклонение того или иного геометрического «объекта» от соответствующих «плоских» объектов.

Пове́рхность в геометрии и топологии — двумерное топологическое многообразие. Наиболее известными примерами поверхностей являются границы геометрических тел в обычном трёхмерном евклидовом пространстве. С другой стороны, существуют поверхности, которые нельзя вложить в трёхмерное евклидово пространство без привлечения сингулярности или самопересечения.

Электри́ческий дипо́льный моме́нт (ЭДМ) — векторная физическая величина, характеризующая, наряду с полным зарядом, электрические свойства системы заряженных частиц. После полного заряда и положения системы, дипольный момент — главная характеристика конфигурации системы зарядов при наблюдении издали.

Закон Био́—Савара—Лапла́са — физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током. Был установлен экспериментально в 1820 году Био и Саваром и сформулирован в общем виде Лапласом. Лаплас показал также, что с помощью этого закона можно вычислить магнитное поле движущегося точечного заряда.
Изгиб — в сопротивлении материалов вид деформации, при котором происходит искривление осей прямых брусьев или изменение кривизны осей кривых брусьев, изменение кривизны/искривление срединной поверхности пластины или оболочки. Изгиб связан с возникновением в поперечных сечениях бруса или оболочки изгибающих моментов. Прямой изгиб балки возникает в случае, когда изгибающий момент в данном поперечном сечении бруса действует в плоскости, проходящей через одну из главных центральных осей инерции этого сечения. В случае, когда плоскость действия изгибающего момента в данном поперечном сечении бруса не проходит ни через одну из главных осей инерции этого сечения, изгиб называется косым.
Монохроматическая волна — модель в физике, удобная для теоретического описания явлений волновой природы, означающая, что в спектр волны входит всего одна составляющая по частоте.

Механика контактного взаимодействия занимается расчётом упругих, вязкоупругих и пластичных тел при статическом или динамическом контакте. Механика контактного взаимодействия является основополагающей инженерной дисциплиной, обязательной при проектировании надёжного и энергосберегающего оборудования. Она будет полезна при решении многих контактных задач, например, колесо-рельс, при расчёте муфт, тормозов, шин, подшипников скольжения и качения, двигателей внутреннего сгорания, шарниров, уплотнений; при штамповке, металлообработке, ультразвуковой сварке, электрических контактах и др. Она охватывает широкий спектр задач, начиная от расчётов прочности элементов сопряжения трибосистемы с учётом смазывающей среды и строения материала, до применения в микро- и наносистемах.

Центростреми́тельное (норма́льное) ускоре́ние — составляющая ускорения тела, характеризующая быстроту изменения направления вектора скорости. Направлено к центру кривизны траектории, с чем и связан термин. Обозначается символом, выбранным для ускорения, с добавлением значка «нормальное»:
; в системе СИ измеряется в м/с2.
Объёмный мо́дуль упру́гости — характеристика способности вещества сопротивляться всестороннему сжатию. Эта величина определяет связь между относительным изменением объёма тела и вызвавшим это изменение давлением. Например, у воды объёмный модуль упругости составляет около 2000 МПа; это число показывает, что для уменьшения объёма воды на 1 % необходимо приложить внешнее давление величиной 20 МПа. С другой стороны, при увеличении внешнего давления на 0,1 МПа объём воды уменьшается на 1/20 000 часть. Единицей измерения объёмного модуля упругости в Международной системе единиц (СИ) является паскаль.
Изги́бные во́лны — упругие волны, представляющие собой распространяющиеся в стержнях и пластинках деформации изгиба. Строго говоря, изгибными называют только волны, длина волны которых много больше толщины стержня или пластинки. В случае, если длина изгибной волны сравнима с толщиной стержня или пластинки, характер её распространения становится значительно более сложным и такую волну уже не называют изгибной.

Тео́рия пласти́н — раздел теории упругости, в котором рассматриваются упругие тела с толщиной много меньше, чем остальные геометрические размеры. Сведение трёхмерной задачи теории упругости к двумерной и её решение являются основными темами теории пластин. Общий вопрос теории заключается в нахождении уравнений, отвечающих за связи между деформациями и напряжениями при различных допущениях. В случае тонких пластин и малых прогибов применяют теорию Кирхгофа — Лява. Большие прогибы тонких пластин описываются уравнениями Фёппля — фон Кармана. Для упругих свойств толстых пластин применяют теорию Миндлина. Исторически теория пластин развивалась в связи с многочисленными практическими применениями в строительстве, а позже — в кораблестроении и самолётостроении, где важны расчёты на прочность.
Микроконтактная спектроскопия (МКС) — метод спектроскопии элементарных возбуждений в металлах с помощью точечных контактов, размер (диаметр) которых
меньше длины энергетической релаксации (пробега) электронов. Предложен в 1974 И. К. Янсоном в Физико-техническом институте низких температур НАН Украины (г. Харьков) при измерении вольт-амперных характеристик (ВАХ) туннельных переходов металл-диэлектрик-металл, содержащих металлические (короткие) микромостики в барьерном слое. Теория МКС была построена И. О. Куликом, А. Н. Омельянчуком и Р. И. Шехтером.

Контактное сопротивление — сопротивление контактной области между различными материалами, например контакт металл-полупроводник. Контактное сопротивление даёт вклад в общее сопротивление системы, которое можно отнести к интерфейсам контакта электрических выводов и соединений, а не к собственному сопротивлению материала. Этот эффект в англоязычной литературе описывается термином «электрическое контактное сопротивление» англ. electrical contact resistance (ECR) и возникает в результате ограниченных площадей истинного контакта на границе раздела и присутствия резистивных поверхностных плёнок или оксидных слоёв. ECR может изменяться со временем, чаще всего уменьшаясь в процессе, известном как ползучесть сопротивления. Идея падения потенциала на инжекционном электроде была введена Уильямом Шокли, чтобы объяснить разницу между экспериментальными результатами и моделью постепенного приближения канала. В дополнение к термину ECR также используются интерфейсное сопротивление, переходное сопротивление. Термин «паразитное сопротивление» используется как более общий термин, в котором обычно предполагается, что контактное сопротивление является основным компонентом.