Функциона́льный ана́лиз — раздел анализа, в котором изучаются бесконечномерные топологические векторные пространства и их отображения. Наиболее важными примерами таких пространств являются пространства функций.
Математи́ческий ана́лиз — совокупность разделов математики, соответствующих историческому разделу под наименованием «анализ бесконечно малых», объединяет дифференциальное и интегральное исчисления.
Ба́нахово пространство — нормированное векторное пространство, полное по метрике, порождённой нормой. Основной объект изучения функционального анализа.
Топологи́ческое ве́кторное простра́нство, или топологи́ческое лине́йное простра́нство, — векторное пространство, наделённое топологией, относительно которой операции сложения и умножения на число непрерывны. Термин используется в основном в функциональном анализе.
Расстоя́ние, в широком смысле, степень (мера) удалённости объектов друг от друга.
Простра́нство — понятие, используемое в различных разделах знаний.
- Пространство — философское понятие.
Де́льта-фу́нкция — обобщённая функция, которая позволяет записать точечное воздействие, а также пространственную плотность физических величин, сосредоточенных или приложенных в одной точке.
Производная — фундаментальное математическое понятие, используемое в различных вариациях (обобщениях) во многих разделах математики. Это базовая конструкция дифференциального исчисления, допускающая много вариантов обобщений, применяемых в математическом анализе, дифференциальной топологии и геометрии, алгебре.
Преде́л — объект, представляющий собой воображаемую или реальную границу для другого объекта.
В математическом анализе вариацией функции называется числовая характеристика функции одного действительного переменного, связанная с её дифференциальными свойствами. Для функции из отрезка на вещественной прямой в является обобщением понятия длины кривой, задаваемой в этой функцией.
Анри́ Лео́н Лебе́г — французский математик, профессор Парижского университета (1910), один из основоположников современной теории функций вещественной переменной. Член Парижской академии наук (1922), Лондонского королевского общества (1930) и многих других научных организаций, в том числе член-корреспондент АН СССР (1929).
Мори́с Рене́ Фреше́ — французский математик.
Интегра́л — одно из важнейших понятий математического анализа, которое возникает при решении задач:
- о нахождении площади под кривой;
- пройденного пути при неравномерном движении;
- массы неоднородного тела, и тому подобных;
- а также в задаче о восстановлении функции по её производной.
Произво́дная Фреше́ — обобщение понятия производной на бесконечномерные банаховы пространства. Название дано в честь французского математика Мориса Фреше.
Многомерный анализ является обобщением дифференциального и интегрального исчислений для случая нескольких переменных.
Функциональный интеграл — запись или результат функционального интегрирования. Находит наибольшее применение в квантовой физике и статистической физике, а также при изучении ряда классов стохастических процессов вообще.
Дифференциа́л — линейная часть приращения функции или ее аргумента.
Интеграл Фреше — интеграл, задаваемый на множестве элементов произвольной природы.
Анализ — объединение нескольких разделов математики, исторически выросшее из классического математического анализа и охватывающее, кроме дифференциального и интегрального исчислений, входящих в классическую часть, такие разделы, как теории функций вещественной и комплексной переменной, теории дифференциальных и интегральных уравнений, вариационное исчисление, гармонический анализ, функциональный анализ, теорию динамических систем и эргодическую теорию, глобальный анализ. Нестандартный анализ находится на стыке математической логики и анализа, применяет методы теории моделей для альтернативной формализации, прежде всего, классических разделов.
Пространство Фреше — полное локально выпуклое пространство, топология которого может быть задана метрикой. Названо в честь Мориса Фреше.