где — произвольное вещественное число (в общем случае комплексное), называемое порядком.
График функций Бесселя первого рода
Наиболее часто используемые функции Бесселя — функции целых порядков.
Хотя и порождают одинаковые уравнения, обычно договариваются о том, чтобы им соответствовали разные функции (это делается, например, для того, чтобы функция Бесселя была гладкой по ).
Уравнение Бесселя возникает во время нахождения решений уравнения Лапласа и уравнения Гельмгольца в цилиндрических и сферических координатах. Поэтому функции Бесселя применяются при решении многих задач о распространении волн, статических потенциалах и т. п., например:
электромагнитные волны в цилиндрическом волноводе;
теплопроводность в цилиндрических объектах;
формы колебания тонкой круглой мембраны;
распределение интенсивности света, дифрагированного на круглом отверстии;
скорость частиц в цилиндре, заполненном жидкостью и вращающемся вокруг своей оси;
волновые функции в сферически симметричном потенциальном ящике.
Функции Бесселя применяются и в решении других задач, например, при обработке сигналов.
Функция Бесселя является обобщением функции синуса. Ее можно трактовать как колебание струны с переменной толщиной, переменным натяжением (или одновременно обоими условиями); колебаниями в среде с переменными свойствами; колебаниями дисковой мембраны и т. д.
Определения
Поскольку приведённое уравнение является линейным дифференциальным уравнением второго порядка, у него должно быть два линейно независимых решения. Однако в зависимости от обстоятельств выбираются разные определения этих решений. Ниже приведены некоторые из них.
Функции Бесселя первого рода
Функциями Бесселя первого рода, обозначаемыми , являются решения, конечные в точке при целых или неотрицательных . Выбор конкретной функции и её нормализации определяются её свойствами. Можно определить эти функции с помощью разложения в ряд Тейлора около нуля (или в более общий степенной ряд при нецелых ):
Здесь — это гамма-функция Эйлера, обобщение факториала на нецелые значения. График функции Бесселя похож на синусоиду, колебания которой затухают пропорционально , хотя на самом деле нули функции расположены не периодично (однако расстояние между двумя последовательными нулями стремится к при )[1].
Ниже приведены графики для :
График функции Бесселя первого рода J
Если не является целым числом, функции и линейно независимы и, следовательно, являются решениями уравнения. Но если целое, то верно следующее соотношение:
Оно означает, что в этом случае функции линейно зависимы. Тогда вторым решением уравнения станет функция Бесселя второго рода (см. ниже).
Интегралы Бесселя
Можно дать другое определение функции Бесселя для целых значений , используя интегральное представление:
Этот подход использовал Бессель, изучив с его помощью некоторые свойства функций. Возможно и другое интегральное представление:
Для нахождения интегрального представления функции Бесселя в случае нецелых необходимо учесть, что имеется разрез вдоль оси абсцисс. Это вызвано тем, что подынтегральное выражение более не является -периодическим. Таким образом, контур интегрирования разбивается на 3 участка: луч от до , где , окружность единичного радиуса и луч от до при . Проделав несложные математические преобразования, можно получить следующее интегральное представление:
Нетрудно убедиться, что при целых это выражение переходит в предыдущую формулу.
Функции Неймана
Функции Неймана — решения уравнения Бесселя, бесконечные в точке .
Эта функция связана с следующим соотношением:
где в случае целого берётся предел по , вычисляемый, например, с помощью правила Лопиталя.
Функции Неймана также называются функциями Бесселя второго рода. Линейная комбинация функций Бесселя первого и второго родов являет собой полное решение уравнения Бесселя:
Ниже приведён график для :
График функции Бесселя второго рода N
В ряде книг функции Неймана обозначаются .
Сферические функции Бесселя
Сферические функции Бесселя первого рода, jn(x), для n = 0, 1, 2Сферические функции Бесселя второго рода, yn(x), для n = 0, 1, 2
При решении уравнения Гельмгольца в сферических координатах методом разделения переменных уравнение на радиальную часть имеет вид
Два линейно-независимых решения называются сферическими функциями Бесселя jn и yn, и связаны с обычными функциями Бесселя Jn и Неймана Yn с помощью[3]
yn также обозначается nn или ηn; некоторые авторы называют эти функции сферическими функциями Неймана.
Сферические функции Бесселя также могут быть записаны как (формула Релея)[4]
Для функций Бесселя первого и второго рода известны асимптотические формулы. При малых аргументах и неотрицательных они выглядят так[9]:
,
где — постоянная Эйлера — Маскерони (0,5772…), а — гамма-функция Эйлера. Для больших аргументов () формулы выглядят так:
Использование следующего члена асимптотического разложения позволяет значительно уточнить результат. Для функции Бесселя нулевого порядка он выглядит следующим образом:
Ватсон Г. . Теория бесселевых функций. — М.: ИЛ, 1949.
Бейтмен Г., Эрдейи А. .Функции Бесселя, функции параболического цилиндра, ортогональные многочлены // Высшие трансцендентные функции. Т. 2. 2-е изд / Пер. с англ. Н. Я. Виленкина. — М.: Наука, 1974. — 296 с.
Лаврентьев М. А., Шабат Б. В. . Методы теории функций комплексного переменного. — М.: Наука, 1973. — 736 с.
Похожие исследовательские статьи
Лемниска́та Берну́лли — плоская алгебраическая кривая. Определяется как геометрическое место точек, произведение расстояний от которых до двух заданных точек (фокусов) постоянно и равно квадрату половины расстояния между фокусами.
Тригономе́трия — раздел математики, в котором изучаются тригонометрические функции и их использование в геометрии. Данный термин впервые появился в 1595 г. как название книги немецкого математика Бартоломеуса Питискуса, а сама наука ещё в глубокой древности использовалась для расчётов в астрономии, архитектуре и геодезии для вычисления одних элементов треугольника по данным о других его элементах.
Гамма-функция — математическая функция. Была введена Леонардом Эйлером, а своим обозначением гамма-функция обязана Лежандру.
Тригонометри́ческие фу́нкции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе. Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.
Распределе́ние Ма́ксвелла — общее наименование нескольких распределений вероятности, которые описывают статистическое поведение параметров частиц идеального газа. Вид соответствующей функции плотности вероятности диктуется тем, какая величина: скорость частицы, проекция скорости, модуль скорости, энергия, импульс и т. д. — выступает в качестве непрерывной случайной величины. В ряде случаев распределение Максвелла может быть выражено как дискретное распределение по множеству уровней энергии.
Преобразование Радона — интегральное преобразование функции многих переменных, родственное преобразованию Фурье. Впервые введено в работе австрийского математика Иоганна Радона 1917-го года.
Рекуррентная формула — формула вида , выражающая каждый член последовательности через предыдущих членов и номер члена последовательности .
В алгебре корень Бринга или ультрарадикал — это аналитическая функция , задающая единственный действительный корень многочлена . Иначе говоря, для любого верно, что
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Эллипти́ческий интегра́л — некоторая функция над полем действительных или комплексных чисел, которая может быть формально представлена в следующем виде:
,
Обра́тные тригонометри́ческие фу́нкции — математические функции, являющиеся обратными к тригонометрическим функциям. К обратным тригонометрическим функциям обычно относят шесть функций:
арксинус
арккосинус
арктангенс
арккотангенс
арксеканс
арккосеканс
Фу́нкция Э́йри — частное решение дифференциального уравнения
Сферические функции представляют собой угловую часть семейства ортогональных решений уравнения Лапласа, записанную в сферических координатах. Они широко используются для изучения физических явлений в пространственных областях, ограниченных сферическими поверхностями и при решении физических задач, обладающих сферической симметрией. Сферические функции имеют большое значение в теории дифференциальных уравнений в частных производных и теоретической физике, в частности в задачах расчёта электронных орбиталей в атоме, гравитационного поля геоида, магнитного поля планет и интенсивности реликтового излучения.
Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.
Среднее арифметико-геометрическое — величина, определяющаяся для двух величин и как предел последовательности , , где:
…
Формула тангенса половинного угла — тригонометрическая формула, связывающая тангенс половинного угла с тригонометрическими функциями полного угла:
Тороидальная система координат — ортогональная система координат в пространстве, координатными поверхностями которой являются торы, сферы и полуплоскости. Данная система координат может быть получена посредством вращения двумерной биполярной системы координат вокруг оси, равноудалённой от фокусов биполярной системы.
Тета-функции — это специальные функции от нескольких комплексных переменных. Они играют важную роль во многих областях, включая теории абелевых многообразий, пространства модулей и квадратичных форм. Они применяются также в теории солитонов. После обобщения к алгебре Грассмана функции появляются также в квантовой теории поля.
Векторными сферическими гармониками являются векторные функции, преобразующиеся при вращениях системы координат так же, как скалярные сферические функции с теми же индексами, или определенные линейные комбинации таких функций.
Изгиб пластин в теории упругости относится к расчёту деформаций в пластинах, под действием перпендикулярных к плоскости пластины внешних сил и моментов. Величину отклонения можно определить, решив дифференциальные уравнения соответствующей теории пластин в зависимости от допущений на малость тех или иных параметров. По этим прогибам можно рассчитать напряжения в пластине. При известных напряжениях можно использовать теорию разрушения, чтобы определить, нарушение целостности плиты при данной нагрузке. Деформация пластины является функцией двух координат, поэтому теория пластин формулируется в общем случае в терминах дифференциальных уравнений в двумерном пространстве. Также считается, что пластина изначально имеет плоскую форму.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.