Антиводоро́д — аналог водорода, состоящий из антивещества. В то время как обычный атом водорода состоит из электрона и протона, атом антиводорода состоит из позитрона и антипротона. Учёные надеются, что изучение антиводорода поможет пролить свет на вопрос, почему в наблюдаемой Вселенной больше материи, чем антиматерии, известный как проблема барионной асимметрии. Антиводород вырабатывается искусственно в ускорителях заряженных частиц.

Ква́нтовая электродина́мика (КЭД) — квантовополевая теория электромагнитных взаимодействий; наиболее разработанная часть квантовой теории поля. Классическая электродинамика учитывает только непрерывные свойства электромагнитного поля, в основе же квантовой электродинамики лежит представление о том, что электромагнитное поле обладает также и прерывными (дискретными) свойствами, носителями которых являются кванты поля — фотоны. Взаимодействие электромагнитного излучения с заряженными частицами рассматривается в квантовой электродинамике как поглощение и испускание частицами фотонов.
Аксио́н — гипотетическая нейтральная псевдоскалярная элементарная частица, квант поля, постулированного для сохранения CP-инвариантности в квантовой хромодинамике в 1977 году Роберто Печчеи и Хелен Квинн. Аксион должен представлять собой псевдоголдстоуновский бозон, возникающий в результате спонтанного нарушения симметрии Печчеи — Квинн.

Стра́нный кварк или s-кварк — тип элементарных частиц, один из шести известных кварков. Третий по массе из всех лёгких кварков. Странные кварки входят в состав некоторых адронов. Адроны, содержащие странные кварки, называют странными частицами. Странными частицами являются каоны, странные D-мезоны, сигма-барионы и ряд других.
Корпускулярно-волновой дуализм — свойство природы, состоящее в том, что материальные микроскопические объекты могут при одних условиях проявлять свойства классических волн, а при других — свойства классических частиц.
Тео́рия Печче́и — Квинн в физике элементарных частиц — самое известное решение сильной CP-проблемы, то есть экспериментально наблюдаемого отсутствия нарушений CP-инвариантности в квантовой хромодинамике (КХД). Теория предложена в 1977, её авторы — Роберто Печчеи и Хелен Квинн. Механизм Печчеи — Квинн сводится к постулированию новой глобальной U(1)-симметрии.

Робе́рто Дание́ле Печче́и — американский физик-теоретик итальянского происхождения, известный своими работами по физике элементарных частиц. Сын Аурелио Печчеи, основателя Римского клуба.
Легчайшая суперсимметричная частица (LSP) — в физике элементарных частиц — общее название, данное самым лёгким из дополнительных гипотетических частиц, найденных в суперсимметричных моделях. В моделях с сохранением R-чётности LSP устойчива. Проводится обширное наблюдение за дополнительной составляющей материи во Вселенной, именуемой тёмной материей. LSP суперсимметричных моделей является слабо взаимодействующей массивной частицей (WIMP).

Чи́сленная относи́тельность — область общей теории относительности, которая разрабатывает и использует численные методы и алгоритмы для компьютерного моделирования физических процессов в сильных гравитационных полях, когда необходимо численно решать уравнения Эйнштейна. Основные физические системы, для описания которых необходима численная относительность, относятся к релятивистской астрофизике и включают в себя гравитационный коллапс, нейтронные звёзды, чёрные дыры, гравитационные волны и другие объекты и явления, для адекватного описания которых необходимо обращаться к полной общей теории относительности без обычных приближений слабых полей и малых скоростей.
Холодная тёмная материя — предполагаемый вид тёмной материи, частицы которой движутся медленно по сравнению со скоростью света и слабо взаимодействуют с обычным веществом и электромагнитным излучением. Считается, что около 26,8% вещества во Вселенной является тёмной материей, и лишь малая доля представляет собой обычное барионное вещество, составляющее звёзды, планеты и живые организмы.
В физике, предел Бекенштейна — это верхний предел энтропии S, или количества информации I, которые могут содержаться в заданной ограниченной области пространства, имеющей конечное количество энергии; либо, с другой стороны, максимальное количество информации, необходимое для идеального описания заданной физической системы вплоть до квантового уровня. Это подразумевает, что информация о физической системе, или информация, необходимая для идеального описания системы, должна быть конечной, если система занимает конечное пространство и имеет конечную энергию. С точки зрения информатики это означает, что имеется максимум скорости обработки информации для физической системы, которая имеет конечные размеры и энергию, и что машина Тьюринга с конечными физическими размерами и неограниченной памятью физически нереализуема.
Квантовый ластик с отложенным выбором — интерференционный эксперимент, впервые выполненный Юн-Хо Кимом, Р. Юу, С. П. Куликом, Й. Х. Ши и Марланом О. Скалли и опубликованный в начале 1999 года, развивший идею эксперимента с квантовым ластиком, в который включены концепции, рассмотренные в эксперименте Уилера с отложенным выбором. Эксперимент был разработан для исследования специфических последствий известного двухщелевого опыта в квантовой механике, а также последствий квантовой запутанности.
Гексакварк — в физике элементарных частиц большое семейство гипотетических частиц, каждая из которых состоит из шести кварков или антикварков любых ароматов. Шесть составляющих кварков в любой из нескольких комбинаций могут дать нулевой цветовой заряд; например гексакварк может представлять собой два связанных друг с другом бариона (дибарион), или три кварка и три антикварка. По прогнозам, после образования дибарионы будут достаточно стабильными.

X (3872) — субатомная частица, кандидат в экзотические мезоны с массой 3871,68 МэВ/с2, которая не вписывается в кварковую модель из-за необычных значений её квантовых чисел. Впервые была обнаружена в 2003 году в результате эксперимента Belle в Японии, а затем подтверждена рядом других экспериментальных коллабораций. Было предложено несколько объяснений её природы таких как мезонная молекула или пара дикварк-антидикварк (тетракварк).

Эксперимент Belle был проведён Belle Collaboration, международным сообществом из более чем 400 физиков и инженеров, в Исследовательской организации ускорителей высоких энергий (KEK) в Цукубе, префектура Ибараки, Япония. Эксперимент проводился с 1999 по 2010 год.

Экзотические барионы — тип адронов с полуцелым спином, но имеющих в своём составе число кварков, отличное от трёх (qqq), характерных для обычных барионов. Примером могут служить пентакварки, состоящие из четырёх кварков и одного антикварка (qqqqq̅).
Сильно взаимодействующие массивные частицы (SIMP) — гипотетические частицы, которые сильно взаимодействуют между собой и слабо с обычной материей и могут образовывать гипотетическую тёмную материю. Эта гипотеза основывалась на наблюдениях взаимодействующих галактик в кластере Abell 2827, однако с тех пор была поставлена под сомнение дальнейшими наблюдениями и моделированием кластера.

Процесс Дрелла — Яна происходит при адрон-адронном рассеянии на высоких энергиях. При этом кварк одного адрона и антикварк другого адрона аннигилируют, создавая виртуальный фотон или Z-бозон, который затем распадается на пару противоположно заряженных лептонов. Важно отметить, что энергия сталкивающейся пары кварк-антикварк может почти полностью преобразовываться в массу новых частиц. Этот процесс был впервые предложен Сидни Дреллом и Тцун-Мао Яном в 1970 году, чтобы описать производство лептон-антилептонных пар в адронных столкновениях высоких энергий. Экспериментально этот процесс впервые наблюдали J. H. Christenson et al. в столкновениях протонов с ядрами урана на синхротроне AGS.

Эксперименты Хьюза и Древера представляют собой спектроскопические тесты изотропии массы и пространства. Хотя первоначально он задумывался как проверка принципа Маха, теперь он понимается как важная проверка лоренц-инвариантности. Как и в опыте Майкельсона — Морли, можно проверить существование предпочтительной системы отсчёта или других отклонений от лоренц-инвариантности, что также влияет на справедливость принципа эквивалентности. Таким образом, эти эксперименты касаются фундаментальных аспектов как специальной, так и общей теории относительности. В отличие от опытов типа Майкельсона — Морли, эксперименты Хьюза и Древера проверяют изотропию взаимодействий самой материи, то есть протонов, нейтронов и электронов. Достигнутая точность делает этот вид эксперимента одним из самых точных подтверждений теории относительности.
Большие дополнительные измерения, ADD,LED — собирательное название теорий физики элементарных частиц, предполагающих что четырёхмерное пространство-время Стандартной модели располагается на бране, погруженной в многомерное пространство, включающее, помимо четырёхмерного пространства-времени, большие или бесконечные дополнительные измерения. Электромагнитное, сильное и слабое взаимодействия действуют внутри четырех измерений этой браны, а гравитоны, кроме того, могут распространяться через дополнительные измерения. Предполагается, что на основе таких теорий можно найти решение ряда физических проблем: проблемы иерархии, проблемы космологической постоянной и т.д. Идея больших дополнительных измерений была выдвинута Нимой Аркани-Хамедом, Савасом Димопулосом и Джиа Двали в 1998 году. Предполагается, что излучение гравитонов в дополнительные измерения позволит экспериментально проверить теорию больших дополнительных измерений на современных ускорителях при энергиях столкновения порядка ТэВ. Один из способов проверить теорию заключается в столкновении двух протонов в Большом адронном коллайдере или электрона и позитрона в электронном ускорителе так, чтобы при их столкновении образовался гравитон, который мог бы излучиться в дополнительные измерения, что привело бы к уменьшению наблюдаемой энергии и поперечного импульса. До сих пор ни один эксперимент на Большом адронном коллайдере не обнаружил подобного эффекта.