Слева полная матрица плотности двухчастичной системы. Справа редуцированная матрица плотности первой частицы полученная как частичный след для второй частицы.
Для любого пространства , обозначим пространство линейных операторов на нем как . Пусть , являются конечномерными векторными пространствами над полем с размерностями и соответственно. Пусть базисами в V иW будут соответственно , и .
Частичный след для пространства , это отображение заданное соотношением
Линейный оператор заданный таким образом не зависит от выбора базиса , и .
Частичный след как квантовая операция
Рассмотрим двухчастичные состояния. Чистые вектора-состояния принадлежат гильбертову пространству , а матрицы плотности, соответственно, . Рассмотрим матрицу плотности .
Те́нзор — применяемый в математике и физике математический объект линейной алгебры, заданный на векторном пространстве конечной размерности. В физике в качестве векторного пространства обычно выступает физическое трёхмерное пространство или четырёхмерное пространство-время, а компонентами тензора являются координаты (проекции) взаимосвязанных физических величин. Использование тензоров в физике позволяет глубже понять физические законы и уравнения, упростить их запись за счёт сведения многих связанных физических величин в один тензор, а также записывать уравнения в форме, не зависящей от выбранной системы отсчёта.
Преобразова́ния Ло́ренца — линейные преобразования векторного псевдоевклидова пространства, сохраняющие длины или, что эквивалентно, скалярное произведение векторов.
Матрица плотности — один из способов описания состояния квантовомеханической системы. В отличие от волновой функции, пригодной лишь для описания чистых состояний, оператор плотности в равной мере может задавать как чистые, так и смешанные состояния. Основанный на понятии оператора плотности формализм был предложен независимо Л. Д. Ландау и Дж. фон Нейманом в 1927 году и Ф. Блохом в 1946 году.
Теоре́ма Лиуви́лля, названная по имени французского математика Жозефа Лиувилля, является ключевой теоремой в математической физике, статистической физике и гамильтоновой механике. Теорема утверждает сохранение во времени фазового объёма, или плотности вероятности в фазовом пространстве.
Тензорное произведение — операция над векторными пространствами, а также над элементами перемножаемых пространств.
Метод главных компонент — один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретён Карлом Пирсоном в 1901 году. Применяется во многих областях, в том числе в эконометрике, биоинформатике, обработке изображений, для сжатия данных, в общественных науках.
Оператор Гильберта — Шмидта — это ограниченный оператор на гильбертовом пространстве с конечной нормой Гильберта — Шмидта, т. е. для которого существует такой ортонормированный базис в , что
Симплекти́ческое пространство — это векторное пространство S с заданной на нём симплектической формой, то есть билинейной кососимметрической невырожденной 2-формой:
Бра и кет — алгебраический формализм, предназначенный для описания квантовых состояний. Называется также обозначениями Дирака. В матричной механике данная система обозначений является общепринятой. Данная система обозначений представляет собой не более чем иные текстуальные обозначения для векторов, ковекторов, билинейных форм и скалярных произведений, и потому применима в линейной алгебре вообще. В тех случаях, когда данная система обозначений используется в линейной алгебре, обычно речь идет о бесконечно-мерных пространствах и/или о линейной алгебре над комплексными числами.
Цепно́й компле́кс и двойственное понятие коцепной комплекс — основные понятия гомологической алгебры.
Уравнение Линдблада — уравнение для матрицы плотности, является наиболее общим видом марковского производящего уравнения, описывающего неунитарную эволюцию матрицы плотности . Эволюция при этом представляется вполне-положительным отображением (супероператором), сохраняющим след. Предложено в 1976 году Витторио Горини, Анжеем Коссаковским, Джорджем Сударшаном и Йёраном Линдбладом.
Коэффициенты Клебша — Гордана находят применение при описании взаимодействия квантовомеханических моментов импульса. Они представляют собой коэффициенты разложения собственных функций суммарного момента импульса по базису собственных функций суммируемых моментов импульса. Коэффициенты Клебша — Гордана применяются при вычислении спин-орбитального взаимодействия, а также в формализме изоспина.
Произведение Кронекера — бинарная операция над матрицами произвольного размера, обозначается . Результатом является блочная матрица.
Норма матрицы — норма в линейном пространстве матриц, как правило некоторым образом связанная с соответствующей векторной нормой.
Квантовое неравенство Крамера — Рао — неравенство для нижней границы для среднеквадратической ошибки в квантовой теории оценивания, аналогичное неравенству Крамера — Рао в классической теории оценивания.
Полуопределённое программирование — подраздел выпуклого программирования, которое занимается оптимизацией линейной целевой функции на пересечении конусов положительно полуопределённых матриц с аффинным пространством.
Группа Лоренца является группой Ли симметрий пространства-времени в специальной теории относительности. Эта группа может быть реализована как набор матриц, линейных преобразований или унитарных операторов на некотором гильбертовом пространстве. Группа имеет различные представления. В любой релятивистски инвариантной физической теории эти представления как-то должны быть отражены. Сама физика должна быть сделана на их основе. Более того, специальная теория относительности вместе с квантовой механикой являются двумя физическими теориями, которые тщательно проверены и объединение этих двух теорий сводится к изучению бесконечномерных унитарных представлений группы Лоренца. Это имеет как историческую важность в основном течении в теоретической физике, так и связи с более спекулятивными теориями настоящего времени.
Представление группы Ли — это линейное действие группы Ли на векторном пространстве или, что то же самое, гладкий гомоморфизм группы Ли в группу обратимых операторов на векторном пространстве. Играет важную роль в изучении непрерывной симметрии в математике и теоретической физике. Представления групп Ли изучены довольно хорошо, основным инструментом их изучения является использование соответствующих «инфинитезимальных» представлений алгебр Ли.
Симметрии в квантовой механике — преобразования пространства-времени и частиц, которые оставляют неизменными уравнения квантовой механики. Рассматриваются во многих разделах квантовой механики, которые включают релятивистскую квантовую механику, квантовую теорию поля, стандартную модель и физику конденсированного состояния. В целом, симметрия в физике, законы инвариантности и сохранения являются основополагающими ограничениями для формулирования физических теорий и моделей. На практике это мощные методы решения задач и прогнозирования того, что может случиться. Хотя законы сохранения не всегда дают конечное решение проблемы, но они формируют правильные ограничения и наметки к решению множества задач.
Ядро линейного отображения — это такое линейное подпространство области определения отображения, каждый элемент которого отображается в нулевой вектор. А именно: если задано линейное отображение между двумя векторными пространствами и , то ядро отображения — это векторное пространство всех элементов пространства , таких что , где обозначает нулевой вектор из , или более формально:
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.