Численное решение уравнений и их систем состоит в приближённом определении корней уравнения или системы уравнений и применяется в случаях, когда точный метод решения неизвестен или трудоёмок.
Рассмотрим методы численного решения уравнений и систем уравнений:
или
Численное решение задачи можно проводить как непосредственно (используя одноимённые методы), так и с применением оптимизационных методов, приведя задачу к соответствующему виду. Последним посвящена статья Градиентные методы.
Численные методы решения уравнений
Покажем, как можно решить изначальную систему уравнений, не прибегая к оптимизационным методам. В случае, если наша система представляет собой СЛАУ, целесообразно прибегнуть к таким методам, как метод Гаусса или метод Ричардсона. Однако мы всё же будем исходить из предположения, что вид функции нам неизвестен, и воспользуемся одним из итерационных методов численного решения. Среди большого разнообразия таковых выберем один из наиболее известных — метод Ньютона. Этот метод в свою очередь основывается на принципе сжимающего отображения. Поэтому сначала будет изложена суть последнего.
Говорят, что функция осуществляет сжимающее отображение на , если
Тогда справедлива следующая основная теорема:
Теорема Банаха (принцип сжимающих отображений). Если — сжимающее отображение на , то:
Уравнение имеет единственный корень в ;
Итерационная последовательность сходится к этому корню;
Для очередного члена справедливо .
Из последнего пункта теоремы вытекает, что скорость сходимости любого метода на основе сжимающих отображений не менее линейной.
Поясним смысл параметра для случая одной переменной. Согласно теореме Лагранжа имеем:
Отсюда следует, что . Таким образом, для сходимости метода достаточно, чтобы
Общий алгоритм последовательных приближений
Уравнение преобразуется к уравнению с тем же корнем вида , где — сжимающее отображение.
Задаётся начальное приближение и точность
Вычисляется очередная итерация
Если , то и возврат к шагу 3.
Иначе и остановка.
Применительно к общему случаю операторных уравнений этот метод называется методом последовательных приближений, или методом простой итерации. Однако уравнение можно преобразовывать к сжимающему отображению , имеющему тот же корень, разными способами. Это порождает ряд частных методов, имеющих как линейную, так и более высокие скорости сходимости.
Применительно к СЛАУ
Рассмотрим систему:
Для неё итерационное вычисление будет выглядеть так:
Метод будет сходится с линейной скоростью, если
Двойные вертикальные черты означают некоторую норму матрицы.
Решение уравнения cos(x)=x по методу простой итерации, очередная итерация: xn+1=cos xn, начальное приближение: x1 = −1Решение уравнения f(x)=0 по методу Ньютона, начальное приближение: x1=a.
Оптимизация преобразования исходного уравнения в сжимающее отображение позволяет получить метод с квадратичной скоростью сходимости.
Чтобы отображение было наиболее эффективно, необходимо, чтобы в точке очередной итерации выполнялось . Будем искать решение данного уравнения в виде , тогда:
Воспользуемся тем, что , и получим окончательную формулу для :
С учётом этого сжимающая функция примет вид:
Тогда алгоритм нахождения численного решения уравнения сводится к итерационной процедуре вычисления:
Многомерный случай
Обобщим полученный результат на многомерный случай.
Выбирая некоторое начальное приближение , находят последовательные приближения путём решения систем уравнений:
Лемниска́та Берну́лли — плоская алгебраическая кривая. Определяется как геометрическое место точек, произведение расстояний от которых до двух заданных точек (фокусов) постоянно и равно квадрату половины расстояния между фокусами.
Уравнение диффузии представляет собой частный вид дифференциального уравнения в частных производных. Бывает нестационарным и стационарным.
Уравнение теплопроводности — дифференциальное уравнение в частных производных второго порядка, которое описывает распределение температуры в заданной области пространства и ее изменение во времени.
Теоре́ма Нётер или первая теорема Нётер утверждает, что каждой дифференцируемой симметрии действия для физической системы с консервативными силами соответствует закон сохранения. Теорема была доказана математиком Эмми Нётер в 1915 году и опубликована в 1918 году. Действие для физической системы представляет собой интеграл по времени функции Лагранжа, из которого можно определить поведение системы согласно принципу наименьшего действия. Эта теорема применима только к непрерывным и гладким симметриям над физическим пространством.
Краевая задача — задача о нахождении решения заданного дифференциального уравнения, удовлетворяющего краевым (граничным) условиям в концах интервала или на границе области. Краевые задачи для гиперболических и параболических уравнений часто называют начально-краевыми или смешанными, потому что в них задаются не только граничные, но и начальные условия.
Зада́ча Коши́ — одна из основных задач теории дифференциальных уравнений ; состоит в нахождении решения (интеграла) дифференциального уравнения, удовлетворяющего так называемым начальным условиям.
Фу́нкции Бе́сселя в математике — семейство функций, являющихся каноническими решениями дифференциального уравнения Бесселя:
Ме́тод Га́усса — классический метод решения системы линейных алгебраических уравнений (СЛАУ). Назван в честь немецкого математика Карла Фридриха Гаусса. Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида, из которой последовательно, начиная с последних, находятся все переменные системы.
Гессиан функции — симметрическая квадратичная форма, описывающая поведение функции во втором порядке.
Рекуррентная формула — формула вида , выражающая каждый член последовательности через предыдущих членов и номер члена последовательности .
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Функция Аккермана — всюду определённая вычислимая функция, которая не является примитивно рекурсивной. Она принимает два неотрицательных целых числа в качестве параметров и возвращает натуральное число, обозначается . Эта функция растёт очень быстро, например, число настолько велико, что количество цифр в порядке этого числа многократно превосходит количество атомов в наблюдаемой части Вселенной. В теоретической информатике она применяется для демонстрации пределов возможностей компьютеров и методов оптимизации. Также существует целое семейство родственных ей функций, имеющих схожую скорость роста и схожее определение.
Эллипти́ческий интегра́л — некоторая функция над полем действительных или комплексных чисел, которая может быть формально представлена в следующем виде:
,
Ме́тод Га́усса — Зе́йделя — является классическим итерационным методом решения системы линейных уравнений.
Метод Ньютона, алгоритм Ньютона — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643—1727). Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Модификацией метода является метод хорд и касательных. Также метод Ньютона может быть использован для решения задач оптимизации, в которых требуется определить ноль первой производной либо градиента в случае многомерного пространства.
АТС теорема — теорема об аппроксимации тригонометрической суммы более короткой.
Схема Карнина — Грина — Хеллмана — пороговая схема разделения секрета на основе скалярного произведения. Авторы — Эхуд Карнин, Йонатан Грин и Мартин Хеллман.
Спонта́нное наруше́ние симме́три́и — способ нарушения симметрии физической системы, при котором исходное состояние и уравнения движения системы инвариантны относительно некоторых преобразований симметрии, но в процессе эволюции система переходит в состояние, для которого инвариантность относительно некоторых преобразований начальной симметрии нарушается. Спонтанное нарушение симметрии всегда связано с вырождением состояния с минимальной энергией, называемого вакуумом. Множество всех вакуумов имеет начальную симметрию, однако каждый вакуум в отдельности — нет. Например, шарик в жёлобе с двумя ямами скатывается из неустойчивого симметричного состояния в устойчивое состояние с минимальной энергией либо влево, либо вправо, разрушая при этом симметрию относительно изменения левого на правое.
Тороидальная система координат — ортогональная система координат в пространстве, координатными поверхностями которой являются торы, сферы и полуплоскости. Данная система координат может быть получена посредством вращения двумерной биполярной системы координат вокруг оси, равноудалённой от фокусов биполярной системы.
Циркулянт или циркулянтная матрица — это матрица вида
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.