
Ква́нтовая тео́рия по́ля (КТП) — раздел физики, изучающий поведение квантовых систем с бесконечно большим числом степеней свободы — квантовых полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений. На языке КТП основываются физика высоких энергий и физика элементарных частиц, её математический аппарат используется в физике конденсированного состояния. КТП в виде Стандартной модели в настоящее время является единственной экспериментально подтверждённой теорией, способной описывать и предсказывать результаты экспериментов при достижимых в современных ускорителях высоких энергиях.
Калибро́вочная инвариа́нтность — инвариантность прогнозов физической полевой теории относительно (локальных) калибровочных преобразований — координатно-зависимых преобразований поля, описывающих переход между базисами в пространстве внутренних симметрий этого поля.
Изотопи́ческий спин (изоспи́н) — одна из внутренних характеристик, определяющая число зарядовых состояний адронов. В частности, протон и нейтрон различаются значением проекции изоспина, тогда как абсолютные значения их изоспина одинаковы. Последнее выражает свойство изотопической инвариантности сильного взаимодействия. Понятие изотопического спина было введено Гейзенбергом в 1932 г.

Принцип исключения Паули — квантово-механический принцип, который гласит, что два или более идентичных фермиона не могут одновременно находиться в одном и том же квантовом состоянии в квантовой системе. Этот принцип был сформулирован австрийским физиком Вольфгангом Паули в 1925 году для электронов, а затем распространился на все фермионы в его теореме о связи спина со статистикой в 1940 году.

Электромагни́тное взаимоде́йствие или электромагнетизм — одно из четырёх фундаментальных взаимодействий. Существует между частицами, обладающими электрическим зарядом. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля.
Алгоритм Гровера — квантовый алгоритм решения задачи перебора, то есть нахождения решения уравнения


Фазовое пространство в математике и физике — пространство, на котором представлено множество всех состояний системы так, что каждому возможному состоянию системы соответствует точка фазового пространства.
Пото́чный или Пото́ковый шифр — это симметричный шифр, в котором каждый символ открытого текста преобразуется в символ шифрованного текста в зависимости не только от используемого ключа, но и от его расположения в потоке открытого текста. Поточный шифр реализует другой подход к симметричному шифрованию, нежели блочные шифры.
Заря́довое сопряже́ние — операция замены частицы на соответствующую античастицу.
T-симме́три́я — симметрия уравнений, описывающих законы физики, по отношению к операции замены времени t на −t. В квантовой механике математически записывается, как равенство нулю коммутатора оператора Гамильтона и антиунитарного оператора обращения времени

Водородоподо́бный а́том или водородоподо́бный ио́н представляет собой любое атомное ядро, которое имеет один электрон и, следовательно, является изоэлектронным атому водорода. Эти ионы несут положительный заряд
, где
— зарядовое число ядра. Примерами водородоподобных ионов являются He+, Li2+, Be3+ и B4+. Поскольку водородоподобные ионы представляют собой двухчастичные системы, взаимодействие которых зависит только от расстояния между двумя частицами, их (нерелятивистское) уравнение Шредингера и (релятивистское) уравнение Дирака имеют решения в аналитической форме. Решения являются одноэлектронными функциями и называются водородоподобными атомными орбиталями.
Пра́вилами отбо́ра в спектроскопии называют ограничения и запрет на переходы между уровнями квантомеханической системы с поглощением или излучением фотона, наложенные законами сохранения и симметрией.

Статистическая механика или статистическая термодинамика — механика больших ансамблей относительно простых систем, таких как атомы в кристалле, молекулы в газе, фотоны в лазерном пучке, звёзды в галактике, автомобили на шоссе. Статистическая механика использует статистические методы для определения свойств и поведения макроскопических физических систем, находящихся в термодинамическом равновесии, на основе их микроскопической структуры и законов движения, которые считаются заданными. Статистические методы были введены в этом контексте Максвеллом в серии из трех статей (1860—1879) и Больцманом в серии из четырёх статей (1870—1884), которые заложили основы кинетической теории газов. Классическая статистическая механика была основана Гиббсом (1902); а позднее описание микроскопических состояний на основе классической механики было исправлено и дополнено в соответствии с квантовой механикой. Термодинамика, кинетическая теория и статистическая механика — это дисциплины, связанные объектом исследования, но отличающиеся используемыми методами; часто они представлены вместе под общим названием статистической физики. Последовательное построение неравновесной статистической механики было выполнено Н. Н. Боголюбовым в 1946 году. При описании систем в рамках статистической механики используется понятие среднего по ансамблю. Основными уравнениями статистической механики являются уравнения Лиувилля и цепочка уравнений Боголюбова.
Чётность — свойство физической величины сохранять свой знак при некоторых дискретных преобразованиях. Она выражается числом, принимающим два значения: +1 и −1.
- A′ = P·A,
P-симметрия — симметрия уравнений движения относительно изменения знаков координат всех частиц. По отношению к этой операции симметричны электромагнитные, сильные и, cогласно общей теории относительности, гравитационные взаимодействия. Cлабые взаимодействия несимметричны. Этой операции соответствует один из видов чётности — физическая величина пространственная чётность (P-чётность).
Симметрии в квантовой механике — преобразования пространства-времени и частиц, которые оставляют неизменными уравнения квантовой механики. Рассматриваются во многих разделах квантовой механики, которые включают релятивистскую квантовую механику, квантовую теорию поля, стандартную модель и физику конденсированного состояния. В целом, симметрия в физике, законы инвариантности и сохранения являются основополагающими ограничениями для формулирования физических теорий и моделей. На практике это мощные методы решения задач и прогнозирования того, что может случиться. Хотя законы сохранения не всегда дают конечное решение проблемы, но они формируют правильные ограничения и наметки к решению множества задач.