Шар — геометрическое тело; совокупность всех точек пространства, находящихся от центра на расстоянии, не больше заданного. Это расстояние называется радиусом шара. Шар образуется вращением полукруга (или круга) вокруг его неподвижного диаметра. Этот диаметр называется осью шара, а оба конца указанного диаметра — полюсами шара. Поверхность шара называется сферой: замкнутый шар включает эту сферу, открытый шар — исключает.
Если секущая плоскость проходит через центр шара, то сечение шара называется большим кругом. Другие плоские сечения шара называются малыми кругами. Площадь этих сечений вычисляется по формуле πR².
По определению такой топологии открытые шары с центрами в любой точке являют собой её базу.
Очевидно, . Однако, вообще говоря, замыкание открытого шара может не совпадать с замкнутым шаром:
Например: пусть — дискретное метрическое пространство, и состоит из более, чем двух точек. Тогда для любого имеем:
Объём
Объём n-мерного шара радиуса R в n-мерном евклидовом пространстве:[1]
где Γ — это эйлеровскаягамма-функция (которая является расширением факториала на поле действительных и комплексных чисел). Используя частные представления гамма-функции для целых и полуцелых значений, можно получить формулы объёма n-мерного шара, которые не требуют гамма-функции:
,
.
Знаком !! здесь обозначен двойной факториал.
Эти формулы также можно свести в одну общую:
.
Обратная функция для выражения зависимости радиуса от объёма:
.
Эта формула также может быть разделена на две: для пространств с чётным и нечётным количеством размерностей, используя факториал и двойной факториал вместо гамма-функции:
,
.
Рекурсия
Формулу объёма также можно выразить в виде рекурсивной функции. Эти формулы могут быть доказаны непосредственно или выведены из основной формулы, представленной выше. Проще всего выразить объём n-мерного шара через объём шара размерности (при условии, что они имеют одинаковый радиус):
.
Также существует формула объёма n-мерного шара в зависимости от объёма (n−1)-мерного шара того же радиуса:
.
То же без гамма-функции:
Пространства младших размерностей
Формулы объёма для некоторых пространств младших размерностей:
Кол-во измерений
Объём шара радиуса R
Радиус шара объёма V
1
2
3
4
5
6
7
8
9
10
Пространства старших размерностей
Объём гипершара размерности n единичного радиуса в зависимости от n.
При стремлении количества размерностей к бесконечности объём шара единичного радиуса стремится к нулю. Это может быть выведено из рекурсивного представления формулы объёма.
Э́ллипс — замкнутая плоская кривая, исторически определённая как одно из конических сечений . Название эллипсу дал Аполлоний Пергский в своей «Конике».
Ко́мпле́ксные чи́сла — числа вида где — вещественные числа, — мнимая единица, то есть число, для которого выполняется равенство: Множество комплексных чисел обычно обозначается символом Вещественные числа можно рассматривать как частный случай комплексных, они имеют вид Главное свойство — в нём выполняется основная теорема алгебры, то есть любой многочлен -й степени имеет корней. Доказано, что система комплексных чисел логически непротиворечива.
— основание натурального логарифма, математическая константа, иррациональное и трансцендентное число. Приблизительно равно 2,71828. Иногда число называют числом Эйлера или числом Непера. Обозначается строчной латинской буквой «e».
Тригономе́трия — раздел математики, в котором изучаются тригонометрические функции и их использование в геометрии. Данный термин впервые появился в 1595 г. как название книги немецкого математика Бартоломеуса Питискуса, а сама наука ещё в глубокой древности использовалась для расчётов в астрономии, архитектуре и геодезии для вычисления одних элементов треугольника по данным о других его элементах.
Гамма-функция — математическая функция. Была введена Леонардом Эйлером, а своим обозначением гамма-функция обязана Лежандру.
Преобразование Фурье́ — операция, сопоставляющая одной функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие — гармонические колебания с разными частотами.
Тригонометри́ческие фу́нкции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе. Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.
Де́льта-фу́нкция — обобщённая функция, которая позволяет записать точечное воздействие, а также пространственную плотность физических величин, сосредоточенных или приложенных в одной точке.
Распределе́ние Ма́ксвелла — общее наименование нескольких распределений вероятности, которые описывают статистическое поведение параметров частиц идеального газа. Вид соответствующей функции плотности вероятности диктуется тем, какая величина: скорость частицы, проекция скорости, модуль скорости, энергия, импульс и т. д. — выступает в качестве непрерывной случайной величины. В ряде случаев распределение Максвелла может быть выражено как дискретное распределение по множеству уровней энергии.
Ряд Те́йлора — разложение функции в бесконечную сумму степенных функций. Частный случай разложения в ряд Тейлора в нулевой точке называется рядом Маклорена.
Моме́нт ине́рции — тензорная физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле. Момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества, которое, формально, может представлять собой не обязательно ось вращения, но и точку или плоскость. В последних случаях говорят о моменте инерции относительно точки или плоскости, а возникать такие величины могут в формальных вычислениях, например, при расчете тензора инерции.
В термодинамике и физике твёрдого тела модель Дебая — метод, развитый Дебаем в 1912 г. для оценки фононного вклада в теплоёмкость твёрдых тел. Модель Дебая рассматривает колебания кристаллической решётки как газ квазичастиц — фононов. Эта модель правильно предсказывает теплоёмкость при низких температурах, которая, согласно закону Дебая, пропорциональна . В пределе высоких температур теплоёмкость стремится к 3R, согласно закону Дюлонга — Пти.
Гиперсфе́ра — гиперповерхность в -мерном евклидовом пространстве, образованная точками, равноудалёнными от заданной точки, называемой центром сферы.
при гиперсфера вырождается в две точки, равноудалённые от центра;
при она представляет собой окружность;
при гиперсфера является сферой.
при гиперсфера является 3-сферой.
при гиперсфера является 4-сферой.
Мни́мая едини́ца — комплексное число, квадрат которого равен . В математике и физике мнимая единица обозначается латинской буквой , в электротехнике — буквой .
Возведе́ние в сте́пень — арифметическая операция, первоначально определяемая как результат многократного умножения числа на себя. Степень с основанием и натуральным показателем обозначается как
В алгебре корень Бринга или ультрарадикал — это аналитическая функция , задающая единственный действительный корень многочлена . Иначе говоря, для любого верно, что
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Тепловые флуктуации приводят к тому, что на поверхности жидкости постоянно генерируются капиллярные волны, которые оказывают значительное влияние на структуру поверхностного слоя жидкости.
Корень -й степени из числа определяется как такое число , что Здесь — натуральное число, называемое показателем корня ; как правило, оно больше или равно 2, потому что случай не представляет интереса.
Сфери́ческий сегме́нт — поверхность, часть сферы, отсекаемая от неё некоторой плоскостью. Плоскость отсекает два сегмента: меньший сегмент называется также сферическим кругом. Если секущая плоскость проходит через центр сферы, то высота обоих сегментов равна радиусу сферы, и каждый из таких сферических сегментов называют полусферой.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.