
Иску́сственный интелле́кт в самом широком смысле — это интеллект, демонстрируемый машинами, в частности компьютерными системами. Это область исследований в области компьютерных наук, которая разрабатывает и изучает методы и программное обеспечение, позволяющие машинам воспринимать окружающую среду и использовать обучение и интеллект для выполнения действий, которые максимально увеличивают их шансы на достижение поставленных целей. Такие машины можно назвать искусственным интеллектом.
Рекуррентные нейронные сети — вид нейронных сетей, где связи между элементами образуют направленную последовательность. Благодаря этому появляется возможность обрабатывать серии событий во времени или последовательные пространственные цепочки. В отличие от многослойных перцептронов, рекуррентные сети могут использовать свою внутреннюю память для обработки последовательностей произвольной длины. Поэтому сети RNN применимы в таких задачах, где нечто целостное разбито на части, например: распознавание рукописного текста или распознавание речи. Было предложено много различных архитектурных решений для рекуррентных сетей от простых до сложных. В последнее время наибольшее распространение получили сеть с долговременной и кратковременной памятью (LSTM) и управляемый рекуррентный блок (GRU).
Вычислительный интеллект — ответвление искусственного интеллекта. Как альтернатива классическому искусственному интеллекту, основанному на строгом логическом выводе, он опирается на эвристические алгоритмы, используемые, например, в нечёткой логике, искусственных нейронных сетях и эволюционном моделировании. Кроме того, вычислительный интеллект охватывает такие области как роевой интеллект, фракталы и теория хаоса, искусственная иммунная система, вейвлеты и т. д.

Джеффри Хи́нтон — британский и канадский учёный, внёсший заметный вклад в глубокое обучение.

Сеть радиально-базисных функций — искусственная нейронная сеть, которая использует радиальные базисные функции как функции активации.
Глубокое обучение — совокупность методов машинного обучения, основанных на обучении представлениям, а не специализированных алгоритмах под конкретные задачи. Многие методы глубокого обучения были известны ещё в 1980-е годы, но результаты не впечатляли, пока продвижения в теории искусственных нейронных сетей и вычислительные мощности середины 2000-х годов не позволили создавать сложные технологические архитектуры нейронных сетей, обладающие достаточной производительностью и позволяющие решать широкий спектр задач, не поддававшихся эффективному решению ранее, например, в компьютерном зрении, машинном переводе, распознавании речи, причём качество решения во многих случаях теперь сопоставимо, а в некоторых превосходит эффективность человека.
AlphaGo — программа для игры в го, разработанная компанией Google DeepMind в 2015 году. AlphaGo стала первой в мире программой, которая выиграла матч без гандикапа у профессионального игрока в го на стандартной доске 19 × 19, и эта победа ознаменовала собой важный прорыв в области искусственного интеллекта, так как большинство специалистов по искусственному интеллекту считало, что подобная программа не будет создана ранее 2020—2025 годов. В марте 2016 года программа выиграла со счётом 4:1 у Ли Седоля, профессионала 9-го дана, во время исторического матча, широко освещавшегося в прессе. После победы в матче Корейская ассоциация падук присвоила AlphaGo «почётный 9-й дан» за «искренние усилия» программы в овладении мастерством игры.
Google DeepMind, ранее DeepMind Technologies, — британская компания, занимающаяся искусственным интеллектом. Основана в 2010 году в Лондоне под названием DeepMind Technologies. В 2014 году была приобретена Google.
Адаптивная сеть на основе системы нечеткого вывода или Адаптивная нейро-нечеткая система вывода, ANFIS — это искусственная нейронная сеть, основанная на нечеткой системе вывода Такаги-Сугено.
Нейро-нечёткие системы или Нечёткие нейронные сети — это системы из области искусственного интеллекта, были предложены Ж. С. Р. Чангом, которые комбинируют методы искусственных нейронных сетей и систем на нечёткой логике. Нейро-нечёткие системы являются результатом попытки создания гибридной интеллектуальной системы, которая бы давала синергетический эффект этих двух подходов путём комбинирования человекоподобного стиля рассуждений нечётких систем с обучением и коннекционистской структурой нейронных сетей. Основная сила нейро-нечётких систем состоит в том, что они являются универсальными аппроксиматорами со способностью запрашивать интерпретируемые правила ЕСЛИ-ТО.
База данных MNIST — объёмная база данных образцов рукописного написания цифр. База данных является стандартом, предложенным Национальным институтом стандартов и технологий США с целью калибрации и сопоставления методов распознавания изображений с помощью машинного обучения в первую очередь на основе нейронных сетей. Данные состоят из заранее подготовленных примеров изображений, на основе которых проводится обучение и тестирование систем. База данных была создана после переработки оригинального набора чёрно-белых образцов размером 20x20 пикселей NIST. Создатели базы данных NIST, в свою очередь, использовали набор образцов из Бюро переписи населения США, к которому были добавлены ещё тестовые образцы, написанные студентами американских университетов. Образцы из набора NIST были нормализированы, прошли сглаживание и приведены к серому полутоновому изображению размером 28x28 пикселей.

Длинная цепь элементов краткосрочной памяти — разновидность архитектуры рекуррентных нейронных сетей, предложенная в 1997 году Зеппом Хохрайтером и Юргеном Шмидхубером. Как и большинство рекуррентных нейронных сетей, LSTM-сеть является универсальной в том смысле, что при достаточном числе элементов сети она может выполнить любое вычисление, на которое способен обычный компьютер, для чего необходима соответствующая матрица весов, которая может рассматриваться как программа. В отличие от традиционных рекуррентных нейронных сетей, LSTM-сеть хорошо приспособлена к обучению на задачах классификации, обработки и прогнозирования временных рядов в случаях, когда важные события разделены временными лагами с неопределённой продолжительностью и границами. Относительная невосприимчивость к длительности временных разрывов даёт LSTM преимущество по отношению к альтернативным рекуррентным нейронным сетям, скрытым марковским моделям и другим методам обучения для последовательностей в различных сферах применения. Из множества достижений LSTM-сетей можно выделить наилучшие результаты в распознавании несегментированного слитного рукописного текста, и победу в 2009 году на соревнованиях по распознаванию рукописного текста (ICDAR). LSTM-сети также используются в задачах распознавания речи, например LSTM-сеть была основным компонентом сети, которая в 2013 году достигла рекордного порога ошибки в 17,7 % в задаче распознавания фонем на классическом корпусе естественной речи TIMIT. По состоянию на 2016 год ведущие технологические компании, включая Google, Apple, Microsoft и Baidu, используют LSTM-сети в качестве фундаментального компонента новых продуктов.
Нейронный машинный перевод Google (GNMT) — это система нейронного машинного перевода (NMT), разработанная компанией Google и представленная в ноябре 2016 года, которая использует искусственную нейронную сеть для повышения беглости и точности перевода в Google Переводчике.
Нейронный машинный перевод — это подход к машинному переводу, в котором используется большая искусственная нейронная сеть. Он отличается от методов машинного перевода, основанных на статистике фраз, которые используют отдельно разработанные подкомпоненты.
Google Brain — это исследовательский проект Google по изучению искусственного интеллекта на основе глубокого обучения. В нём сочетаются открытые исследования в области машинного обучения с разработкой систем и вычислительными мощностями в масштабах Google.
Рекурсивные нейронные сети — вид нейронных сетей, работающих с данными переменной длины. Модели рекурсивных сетей используют иерархические структуры образцов при обучении. Например, изображения, составленные из сцен, объединяющих подсцены, включающие много объектов. Выявление структуры сцены и её деконструкция- нетривиальная задача. При этом необходимо как идентифицировать отдельные объекты, так и всю структуру сцены.

В искусственных нейронных сетях функция активации нейрона определяет выходной сигнал, который определяется входным сигналом или набором входных сигналов. Стандартная компьютерная микросхема может рассматриваться как цифровая сеть функций активации, которые могут принимать значения «ON» (1) или «OFF» (0) в зависимости от входа. Это похоже на поведение линейного перцептрона в нейронных сетях. Однако только нелинейные функции активации позволяют таким сетям решать нетривиальные задачи с использованием малого числа узлов. В искусственных нейронных сетях эта функция также называется передаточной функцией.
Этика искусственного интеллекта является частью этики технологий, характерной для роботов и других искусственно интеллектуальных существ. Она обычно подразделяется на робоэтику, которая решает вопросы морального поведения людей при проектировании, конструировании, использовании и лечении искусственно разумных существ и машинную этику, которая затрагивает проблемы морального поведения искусственных моральных агентов (ИМА).
Нейронная сеть с прямой связью — искусственная нейронная сеть, в которой соединения между узлами не образуют цикл. Такая сеть отличается от рекуррентной нейронной сети. Нейронная сеть с прямой связью была первым и самым простым типом искусственной нейронной сети. В этой сети информация перемещается только в одном направлении вперед от входных узлов, через скрытые узлы и к выходным узлам. В сети нет циклов или петель обратных связей.
Гиперпараметр — параметр машинного обучения, значение которого используется для управления процессом обучения. Его значение устанавливается перед началом обучения, в отличие от значений других параметров, которые определяются во время обучения.