Алгори́тм — совокупность точно заданных правил решения некоторого класса задач или набор инструкций, описывающих порядок действий исполнителя для решения определённой задачи. В старой трактовке вместо слова «порядок» использовалось слово «последовательность», но по мере развития параллельности в работе компьютеров слово «последовательность» стали заменять более общим словом «порядок». Независимые инструкции могут выполняться в произвольном порядке, параллельно, если это позволяют используемые исполнители.
Генети́ческий алгори́тм — эвристический алгоритм поиска, используемый для решения задач оптимизации и моделирования путём случайного подбора, комбинирования и вариации искомых параметров с использованием механизмов, аналогичных естественному отбору в природе. Является разновидностью эволюционных вычислений, с помощью которых решаются оптимизационные задачи с использованием методов естественной эволюции, таких как наследование, мутации, отбор и кроссинговер. Отличительной особенностью генетического алгоритма является акцент на использование оператора «скрещивания», который производит операцию рекомбинации решений-кандидатов, роль которой аналогична роли скрещивания в живой природе.
Проблемное обучение — организованный педагогом способ активного взаимодействия субъекта с проблемно-представленным содержанием обучения, в ходе которого он приобщается к объективным противоречиям научного знания и способам их решения. Учится мыслить, творчески усваивать знания.
Эври́стика — научная область, изучающая специфику созидательной деятельности.
Игра в 15, пятнашки, такен — популярная головоломка, придуманная в 1878 году Ноем Чепмэном. Представляет собой набор одинаковых квадратных костяшек с нанесёнными числами, заключённых в квадратную коробку. Длина стороны коробки в четыре раза больше длины стороны костяшек для набора из 15 элементов, соответственно в коробке остаётся незаполненным одно квадратное поле. Цель игры — перемещая костяшки по коробке, добиться упорядочивания их по номерам, желательно сделав как можно меньше перемещений.
Дерево принятия решений — средство поддержки принятия решений, использующееся в машинном обучении, анализе данных и статистике. Структура дерева представляет собой «листья» и «ветки». На рёбрах («ветках») дерева решения записаны признаки, от которых зависит целевая функция, в «листьях» записаны значения целевой функции, а в остальных узлах — признаки, по которым различаются случаи. Чтобы классифицировать новый случай, надо спуститься по дереву до листа и выдать соответствующее значение.
Data mining — собирательное название, используемое для обозначения совокупности методов обнаружения в данных ранее неизвестных, нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности. Термин введён Григорием Пятецким-Шапиро в 1989 году.
Эвристи́ческое обуче́ние — обучение, ставящее целью конструирование учеником собственного смысла, целей и содержания образования, а также процесса его организации, диагностики и осознания.
Семплирование — в математической статистике обобщенное название методов управления начальной выборкой при известной цели моделирования, которые позволяют выполнить структурно-параметрическую идентификацию наилучшей статистической модели стационарного эргодического случайного процесса.
Поиск A* — в информатике и математике, алгоритм поиска по первому наилучшему совпадению на графе, который находит маршрут с наименьшей стоимостью от одной вершины (начальной) к другой.
Эволюционные алгоритмы — направление в искусственном интеллекте, которое использует и моделирует процессы естественного отбора.
Эвристический алгоритм (эвристика) — алгоритм решения задачи, включающий практический метод, не являющийся гарантированно точным или оптимальным, но достаточный для решения поставленной задачи. Позволяет ускорить решение задачи в тех случаях, когда точное решение не может быть найдено.
Поиск подстроки в строке — одна из простейших задач поиска информации. Применяется в виде встроенной функции в текстовых редакторах, СУБД, поисковых машинах, языках программирования и т. п.
Обобщённая задача коммивояжёра — задача комбинаторной оптимизации, являющаяся обобщением хорошо известной задачи коммивояжёра. Исходными данными для задачи является множество вершин, разбиение этого множества на так называемые кластеры, а также матрица стоимостей перехода из одной вершины в другую. Задача заключается в нахождении кратчайшего замкнутого пути, который бы посетил по одной вершине в каждом кластере.
Поиск «лучший — первый» — алгоритм поиска, исследующий граф путём расширения наиболее перспективных узлов, выбираемых в соответствии с указанным правилом.
Гиперэвристика — эвристический метод поиска, направленный на автоматизацию процесса выбора, комбинирования, обобщения или адаптации нескольких более простых эвристик для эффективного решения вычислительной задачи. Также можно встретить и такое определение: «использование (мета-)эвристик для выбора (мета-)эвристик».
Информи́рованный по́иск — стратегия поиска решений в пространстве состояний, в которой используются знания, относящиеся к конкретной задаче. Информированные методы обычно обеспечивают более эффективный поиск по сравнению с неинформированными методами.
По́иск в простра́нстве состоя́ний — группа математических методов, предназначенных для решения задач искусственного интеллекта.
Компромисс отклонение-дисперсия в статистике и в машинном обучении — это свойство набора моделей предсказания, когда модели с меньшим отклонением от имеющихся данных имеют более высокую дисперсию на новых данных, и наоборот. Компромисс отклонение-дисперсия — конфликт при попытке одновременно минимизировать эти два источника ошибки, которые мешают алгоритмам обучения с учителем делать обобщение за пределами тренировочного набора.
- Смещение — это погрешность оценки, возникающая в результате ошибочного предположения в алгоритме обучения. В результате большого смещения алгоритм может пропустить связь между признаками и выводом (недообучение).
- Дисперсия — это ошибка чувствительности к малым отклонениям в тренировочном наборе. При высокой дисперсии алгоритм может как-то трактовать случайный шум в тренировочном наборе, а не желаемый результат (переобучение).
Алгоритм поиска D* — это любой из трёх связанных алгоритмов инкрементного поиска:
- Оригинальный алгоритм D* Энтони Стенца — это информированный алгоритм инкрементного поиска.
- Сфокусированный D* — это алгоритм инкрементного эвристического поиска, разработанный Энтони Стенцем, который сочетает в себе идеи A* и оригинального D*. Сфокусированный D* возник в результате дальнейшего развития оригинального D*.
- Облегчённый D* — это алгоритм инкрементального эвристического поиска, созданный Свеном Кёнигом и Максимом Лихачёвым, который основан на LPA*, алгоритме инкрементального эвристического поиска, объединяющем идеи алгоритма поиска A* и динамического SWSF-FP.