
Моле́кула — электрически нейтральная частица, образованная из двух или более связанных атомов.

Магнети́зм — форма взаимодействия движущихся электрических зарядов, осуществляемая на расстоянии посредством магнитного поля. Наряду с электричеством, магнетизм — одно из проявлений электромагнитного взаимодействия. С точки зрения квантовой теории поля электромагнитное взаимодействие переносится бозоном — фотоном.

Агрега́тное состоя́ние вещества — физическое состояние вещества, зависящее от соответствующего сочетания температуры и давления. Изменение агрегатного состояния может сопровождаться скачкообразным изменением свободной энергии, энтропии, плотности и других физических величин.

Электри́ческий заря́д — физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии.
p-n перехо́д или электронно-дырочный переход — область соприкосновения двух полупроводников с разными типами проводимости — дырочной и электронной. Электрические процессы в p-n переходах являются основой работы полупроводниковых приборов с нелинейной вольт-амперной характеристикой.
Химическая связь — взаимодействие атомов, обусловливающее устойчивость молекулы или кристалла как целого. Химическая связь определяется взаимодействием между заряженными частицами. Современное описание химической связи проводится на основе квантовой механики. Основные характеристики химической связи — прочность, длина, полярность, устойчивость.
Гиперзвук — упругие волны с частотами от 109 Гц. По физической природе гиперзвук не отличается от звуковых и ультразвуковых волн. Гиперзвук часто представляют как поток квазичастиц — фононов.
Металли́ческая связь — химическая связь между атомами в металлическом кристалле, возникающая за счёт перекрытия (обобществления) их валентных электронов. Металлическая связь описывается многими физическими свойствами металлов, такими как прочность, пластичность, теплопроводность, удельное электрическое сопротивление и проводимость, непрозрачность и блеск.
Ви́гнеровский кристалл — упорядоченное состояние электронов, находящихся в поле положительного, равномерно распределённого заряда.
Носи́тели заря́да — общее название подвижных частиц или квазичастиц, которые несут электрический заряд и способны обеспечивать протекание электрического тока.

Ку́перовская па́ра — связанное состояние двух взаимодействующих через фонон электронов. Обладает нулевым спином и зарядом, равным удвоенному заряду электрона. Впервые подобное состояние было описано Леоном Купером в 1956 году, рассмотревшим лишь упрощённую двухчастичную задачу. Коррелированные пары электронов ответственны за явление сверхпроводимости.
Теория Бардина — Купера — Шриффера — микроскопическая теория сверхпроводников, являющаяся на сегодняшний день доминирующей. В её основе лежит концепция куперовской пары: коррелированного состояния электронов с противоположными спинами и импульсами. В 1972 году создатели теории были удостоены Нобелевской премии по физике. Одновременно микроскопическая теория сверхпроводимости была построена с использованием так называемых преобразований Боголюбова Н. Н. Боголюбовым, показавшим, что сверхпроводимость можно рассматривать как сверхтекучесть электронного газа.
Поляро́н — квазичастица в кристалле, состоящая из электрона и сопровождающего его поля упругой деформации (поляризации) решётки. Медленно движущийся электрон в диэлектрическом кристалле, взаимодействующий с ионами решётки через дальнодействующие силы, будет постоянно окружён областью решёточной поляризации и деформации, вызванной движением электрона. Двигаясь через кристалл, электрон проводит решёточную деформацию, потому можно говорить о наличии облака фононов, сопровождающего электрон. Характер поляризации и энергия связи электрона с решёткой отличаются в металлах, полупроводниках и ионных кристаллах. Это связано с типом связи и скоростью движения электронов в решётке.
Электроны проводимости — электроны, способные переносить электрический заряд в кристалле, отрицательно заряженные квазичастицы в металлах и полупроводниках, электронные состояния в зоне проводимости. В частности, отличается от обычного электрона эффективной массой, а также зависимостью эффективной массы от направления приложенной к электрону проводимости внешних сил.
Теория кристаллического поля — квантовохимическая модель, в которой электронная конфигурация соединений переходных металлов описывается как состояние иона либо атома, находящегося в электростатическом поле, создаваемым окружающими его ионами, атомами или молекулами. Концепция кристаллического поля была предложена Беккерелем для описания состояния атомов в кристаллах и затем развита Хансом Бете и Джоном Ван Флеком для описания низших состояний катионов переходных металлов, окруженных лигандами — как анионами, так и нейтральными молекулами. Теория кристаллического поля была в дальнейшем объединена [и усовершенствована] с теорией (делокализованных) молекулярных орбиталей в более общую теорию поля лигандов, учитывающую частичную ковалентность связи металл-лиганд в координационных соединениях.
Ква́нтовая жи́дкость — жидкость, свойства которой определяются квантовыми эффектами. Вблизи абсолютного нуля, согласно представлениям классической физики, движение атомов должно останавливаться и вещество должно превращаться в кристалл, чего не происходит с некоторыми веществами с малой атомной массой, большой нулевой энергией и слабым взаимодействием между атомами — то, что они остаются жидкостями, обусловлено квантовыми эффектами, препятствующими образованию кристаллической решётки — при нормальном давлении гелий остаётся жидким вплоть до абсолютного нуля, кристаллический гелий можно получить только при повышенном до 25 атмосфер давлении. Жидкость становится квантовой тогда, когда тепловая длина волны де Бройля её частиц становится сравнимой с расстоянием между ними (происходит квантовое вырождение жидкости. В зависимости от того, бозонами или фермионами являются составляющие жидкость частицы, жидкости называются соответственно бозонными или фермионными.
Взаимодействие — философская категория, отражающая процессы воздействия объектов (субъектов) друг на друга, их изменения, взаимную обусловленность и порождение одним объектом других.

Взаимодействие между магнитными моментами парамагнитных частиц в веществе или ядер и упругими колебаниями окружающей их среды (фононами). Различают электронное спин-фононное взаимодействие и ядерное спин-фононное взаимодействие.
Электронная температура — это физическая величина, описывающая среднюю энергию случайного движения электронов зоны проводимости в кристаллических полупроводниках, подверженных воздействию электрического поля. Это состояние возникает, когда частота столкновений между электронами значительно превышает частоту их взаимодействий с фононами кристаллической решетки. В таких условиях в подсистеме электронов проводимости устанавливается частичное равновесие, которое описывается распределением, близким к распределению Максвелла с температурой Te, определяемой из уравнения
