
Хи́мия — одна из важнейших и обширных областей естествознания, наука, изучающая вещества, также их состав и строение, их свойства, зависящие от состава и строения, их превращения, ведущие к изменению состава — химические реакции, а также законы и закономерности, которым эти превращения подчиняются. Поскольку все вещества состоят из атомов, которые благодаря химическим связям способны формировать молекулы, то химия занимается, прежде всего, рассмотрением перечисленных выше задач на атомно-молекулярном уровне, то есть на уровне химических элементов и их соединений. Химия имеет немало связей с физикой и биологией, по сути граница между ними условна, а пограничные области изучаются квантовой химией, химической физикой, физической химией, геохимией, биохимией и другими науками. Является экспериментальной наукой.

Моле́кула — электрически нейтральная частица, образованная из двух или более связанных атомов.

Органи́ческая хи́мия — раздел химии, изучающий структуру, свойства и методы синтеза соединений углерода с другими химическими элементами, относящихся к органическим соединениям. Первоначальное значение термина органическая химия подразумевало изучение только соединений углерода растительного и животного происхождения. По этой причине ряд углеродсодержащих соединений традиционно не относят к органическим, а рассматривают как неорганические соединения. Условно можно считать, что структурным прототипом органических соединений являются углеводороды.

Физи́ческая хи́мия — раздел химии, наука об общих законах строения, структуры и превращения химических веществ. Исследует химические явления с помощью теоретических и экспериментальных методов физики. Наиболее обширный раздел химии.

Аналити́ческая хи́мия — наука, развивающая теоретические основы химического анализа веществ и материалов и разрабатывающая методы идентификации, обнаружения, разделения и определения химических элементов и их соединений, а также методы установления химического состава веществ. Проведение химического анализа в настоящее время заключается в получении информации о составе и природе вещества.

Люминесце́нция — нетепловое свечение вещества, происходящее после поглощения им энергии возбуждения. Впервые люминесценция была описана в XVIII веке.

Спектроскопи́я — раздел физики, посвящённый изучению спектров электромагнитного излучения, которые возникают при переходах между энергетическими уровнями в атомах и молекулах, а также образованных из них макроскопических объектах. В более широком смысле в спектроскопии занимаются изучением спектров различных видов излучения.

Инфракра́сная спектроскопи́я — раздел спектроскопии, изучающий взаимодействие инфракрасного излучения с веществами.

Фотоэлектронная спектроскопия — метод изучения строения вещества, основанный на измерении энергетических спектров электронов, вылетающих при фотоэлектронной эмиссии.
Атомно-эмиссионная спектроскопия (спектрометрия), АЭС или атомно-эмиссионный спектральный анализ — совокупность методов элементного анализа, основанных на изучении спектров испускания свободных атомов и ионов в газовой фазе. Обычно эмиссионные спектры регистрируют в наиболее удобной оптической области длин волн от ~200 до ~1000 нм.
Ультрафиолетовая (электронная) спектроскопия — раздел оптической спектроскопии, который включает получение, исследование и применение спектров испускания, поглощения и отражения в ультрафиолетовой области.
Структурная химия — раздел, область химии, изучающая связь различных физических и физико-химических свойств различных веществ с их химическим строением и реакционной способностью. Структурная химия рассматривает не только геометрическое строение молекул; изучению подвергается следующее — длины химических связей, валентные углы, координационные числа, конформации и конфигурации молекул; эффекты их взаимного влияния, ароматичность.
Спектроскопи́я я́дерного магни́тного резона́нса, ЯМР-спектроскопия — спектроскопический метод исследования химических объектов, использующий явление ядерного магнитного резонанса. Явление ЯМР открыли в 1946 году американские физики Феликс Блох и Эдуард Пёрселл. Наиболее важными для химии и практических применений являются спектроскопия протонного магнитного резонанса (ПМР-спектроскопия), а также спектроскопия ЯМР на ядрах углерода-13, фтора-19, фосфора-31. Если элемент обладает нечетным порядковым номером или изотоп какого-либо элемента имеет нечетное массовое число, ядро такого элемента обладает спином, отличным от нуля. Из возбужденного состояния в нормальное, ядра могут возвращаться, передавая энергию возбуждения окружающей среде-«решетке», под которой в данном случае понимаются электроны или атомы другого сорта, чем исследуемые. Этот механизм передачи энергии называют спин-решеточной релаксацией, его эффективность может быть охарактеризована постоянной T1, называемой временем спин-решеточной релаксации.

Эндоэдральные фуллерены — молекулы фуллеренов, в клетку которых заключены один или несколько атомов или молекул. Такие соединения обозначаются формулой Mm@Cn, где M — инкапсулированный атом или молекула, а нижние индексы указывают на число таких атомов и атомов углерода в молекуле фуллерена. Данное обозначение позволяет отличать эндоэдральные молекулы от обычных химических соединений, которые в случае фуллеренов обозначаются символом MmCn.

Рентгеновская фотоэлектронная спектроскопия (РФЭС) — полуколичественный спектроскопический метод исследования элементного состава, химического и электронного состояния атомов на поверхности изучаемого материала. Он основан на явлении внешнего фотоэффекта. Спектры РФЭС получают облучением материала пучком рентгеновских лучей с регистрацией зависимости количества испускаемых электронов от их энергии связи. Исследуемые электроны эмиттируются по всей глубине проникновения используемого мягкого рентгеновского излучения в исследуемый образец. Однако, выбитые рентгеновскими квантами электроны сильно поглощаются исследуемым веществом настолько, что эмиттированные на глубине около 100 Å они уже не могут достичь поверхности, испуститься в вакуум и, соответственно, быть детектированными прибором. Именно поэтому методом РФЭС можно собрать информацию о самых верхних атомных слоях образца без информации об его объёме. Поэтому этот метод незаменим, как метод анализа и контроля в ряде отраслей таких, как полупроводниковая индустрия, гетерогенный катализ и т. д.

Оже-спектроскопия — метод электронной спектроскопии, основанный на анализе распределения по энергии электронов, возникших в результате Оже-эффекта.

Абсорбционная спектроскопия или спектроскопия поглощения — спектроскопический метод, при использовании которого измеряют поглощение излучения при прохождении через образец в зависимости от частоты или длины волны. Образец частично поглощает энергию, то есть фотоны источника излучения. Интенсивность поглощения изменяется в зависимости от частоты, и такое изменение представляют в виде спектра поглощения. Метод абсорбционной спектроскопии позволяет проводить измерения по всему электромагнитному спектру. Применяется для определения концентрации веществ в растворах. Обладает рядом ценных качеств: возможность одновременного получения качественных и количественных данных, большая информация о химической природе вещества, высокая скорость анализа, высокая чувствительность метода, возможность анализа веществ во всех агрегатных состояниях, возможность анализа смесей без их разделения на компоненты, возможность многократного использования пробы для повторного исследования, позволяет исследовать микроскопические объекты, возможность применения ЭВМ для обработки данных.
Молекулярная электронная спектроскопия или УФ-спектроскопия — методика определения строения вещества на основе анализа спектров поглощения и/или испускания света, взаимодействующего с веществом и вызывающего переходы электронов с одного энергетического уровня на другой.

Ультрафиолетовая фотоэлектронная спектроскопия (УФЭС) — разновидность фотоэлектронной спектроскопии, в которой для возбуждения фотоэлектронов используется излучение ультрафиолетового спектрального диапазона и которая служит для зондирования заполненных электронных состояний валентной зоны и зоны проводимости в поверхностном слое образца.
Электронно-колебательная спектроскопия иначе электронно-колебательная спектроскопия молекул — разновидность метода электронной спектроскопии высокого разрешения, позволяющая по электронному спектру определять колебательные частоты основного и возбуждённых электронных состояний, зависящие от строения исследуемого вещества.