Квазичасти́ца — понятие в квантовой механике, введение которого позволяет существенно упростить описание сложных квантовых систем со взаимодействием, таких, как твёрдые тела и квантовые жидкости.

Фоно́н — квазичастица, квант энергии согласованного колебательного движения атомов твёрдого тела, образующих идеальную кристаллическую решётку.
Во́лны в пла́зме — электромагнитные волны, распространяющиеся в плазме и самосогласованные с коллективным движением заряженных частиц плазмы. В силу того, что доминирующее значение в динамике частиц плазмы играет электромагнитное взаимодействие между ними, электромагнитные свойства плазмы сильно зависят от наличия внешних полей, а также от параметров распространяющихся в ней волн.

Пла́зма — ионизированный газ, одно из четырёх классических агрегатных состояний вещества.
Полупроводни́к — материал, по удельной проводимости занимающий промежуточное место между проводниками и диэлектриками, и отличающийся от проводников (металлов) сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводников является увеличение электрической проводимости с ростом температуры.
Гиперзвук — упругие волны с частотами от 109 Гц. По физической природе гиперзвук не отличается от звуковых и ультразвуковых волн. Гиперзвук часто представляют как поток квазичастиц — фононов.
Релакса́ция — процесс установления термодинамического, а следовательно, и статистического равновесия в физической системе, состоящей из большого числа частиц.
Ви́гнеровский кристалл — упорядоченное состояние электронов, находящихся в поле положительного, равномерно распределённого заряда.
Носи́тели заря́да — общее название подвижных частиц или квазичастиц, которые несут электрический заряд и способны обеспечивать протекание электрического тока.
Физи́ческая кине́тика — микроскопическая теория процессов в неравновесных средах. В кинетике методами квантовой или классической статистической физики изучают процессы переноса энергии, импульса, заряда и вещества в различных физических системах и влияние на них внешних полей. В отличие от термодинамики неравновесных процессов и электродинамики сплошных сред, кинетика исходит из представления о молекулярном строении рассматриваемых сред, что позволяет вычислить из первых принципов кинетические коэффициенты, диэлектрические и магнитные проницаемости и другие характеристики сплошных сред. Физическая кинетика включает в себя кинетическую теорию газов из нейтральных атомов или молекул, статистическую теорию неравновесных процессов в плазме, теорию явлений переноса в твёрдых телах и жидкостях, кинетику магнитных процессов и теорию кинетических явлений, связанных с прохождением быстрых частиц через вещество. К ней же относятся теория процессов переноса в квантовых жидкостях и сверхпроводниках и кинетика фазовых переходов.
Теория Бардина — Купера — Шриффера — микроскопическая теория сверхпроводников, являющаяся на сегодняшний день доминирующей. В её основе лежит концепция куперовской пары: коррелированного состояния электронов с противоположными спинами и импульсами. В 1972 году создатели теории были удостоены Нобелевской премии по физике. Одновременно микроскопическая теория сверхпроводимости была построена с использованием так называемых преобразований Боголюбова Н. Н. Боголюбовым, показавшим, что сверхпроводимость можно рассматривать как сверхтекучесть электронного газа.
Поляро́н — квазичастица в кристалле, состоящая из электрона и сопровождающего его поля упругой деформации (поляризации) решётки. Медленно движущийся электрон в диэлектрическом кристалле, взаимодействующий с ионами решётки через дальнодействующие силы, будет постоянно окружён областью решёточной поляризации и деформации, вызванной движением электрона. Двигаясь через кристалл, электрон проводит решёточную деформацию, потому можно говорить о наличии облака фононов, сопровождающего электрон. Характер поляризации и энергия связи электрона с решёткой отличаются в металлах, полупроводниках и ионных кристаллах. Это связано с типом связи и скоростью движения электронов в решётке.
Ио́нно-звуковы́е во́лны — продольные квазиэлектростатические волны в плазме, связанные с колебанием ионов. Могут возбуждаться в однородной изотропной плазме, в которой температура электронов значительно выше, чем температура ионов.
Абсолютная отрицательная проводимость (АОП) — процесс протекания электрического тока в полупроводнике против внешнего постоянного электрического поля. Возникает в условиях неравновесного распределения электронов по энергии при их взаимодействии с оптическими продольными фононами в сильном магнитном и перпендикулярном ему электрическом поле.

Модель свободных электронов, также известна как модель Зоммерфельда или модель Друде-Зоммерфельда, — простая квантовая модель поведения валентных электронов в атоме металла, разработана Арнольдом Зоммерфельдом на основе классической модели Друде с учётом квантово-механической статистики Ферми — Дирака. Электроны металла рассматриваются в этой модели как Ферми-газ.
Электрон-фононное увлечение — взаимодействие с неравновесными фононами носителей тока в проводнике. При создании в образце градиента температуры, возникает поток фононов, которые, рассеиваясь на электронах, передают им часть своего квазиимпульса и создают поток их от горячего к холодному краю образца. Это один из вкладов в термоэлектрический эффект в замкнутой цепи. В разомкнутой цепи возникает термоэдс увлечения. Эффект увлечения был предсказан Л. Э. Гуревичем для металлов в 1945 году . Фредерикс впервые наблюдал этот эффект в германии в 1953 году. Эффект наблюдают в достаточно чистых образцах при длине свободного пробега носителей тока сравнимой с фононами, то есть электрон-фононное взаимодействие является главным механизмом рассеяния носителей тока, а не примеси и другие релаксационные процессы, и даёт основной вклад в термоэдс при низких температурах.
Микроконтактная спектроскопия (МКС) — метод спектроскопии элементарных возбуждений в металлах с помощью точечных контактов, размер (диаметр) которых
меньше длины энергетической релаксации (пробега) электронов. Предложен в 1974 И. К. Янсоном в Физико-техническом институте низких температур НАН Украины (г. Харьков) при измерении вольт-амперных характеристик (ВАХ) туннельных переходов металл-диэлектрик-металл, содержащих металлические (короткие) микромостики в барьерном слое. Теория МКС была построена И. О. Куликом, А. Н. Омельянчуком и Р. И. Шехтером.
Волна зарядовой плотности (ВЗП) — это периодическое изменение плотности квантовой электронной жидкости и ионов остова металла, часто наблюдаемых в слоистых или линейных кристаллах. Электроны внутри ВЗП формируют стоячую волну и иногда могут вызывать электрический ток. Электроны в такой ВЗП, наподобие электронов в сверхпроводниках, могут распространяться в одномерной среде с высокой степенью корреляции. Однако, в отличие от сверхпроводника, электрический ток ВЗП часто течёт скачками, как вода, капающая из крана, из-за своих электростатических свойств. В ВЗП комбинированные эффекты закрепления и электростатических взаимодействий, вероятно, играют критическую роль в скачкообразном поведении тока ВЗП, как обсуждается в разделах ниже.

Взаимодействие между магнитными моментами парамагнитных частиц в веществе или ядер и упругими колебаниями окружающей их среды (фононами). Различают электронное спин-фононное взаимодействие и ядерное спин-фононное взаимодействие.
Продо́льная релакса́ция (Спин-решёточная релаксация) — релаксационный процесс (эффект) ядерного магнитного резонанса (ЯМР) установления равновесия между спиновой системой и тепловыми колебаниями решётки, описываемый уравнением: dMz/dt=(M0 — Mz)/T1. Где: T1 — время, требуемое для создания равновесной намагниченности (M0) после включения внешнего магнитного поля (время продольной, спин-решёточной релаксации), которое характеризует изменение со временем продольной составляющей компоненты намагниченности; величина 1/T1 — константа скорости перехода возмущённой системы в равновесное состояние; Mz — величина новой равновесной намагниченности, а, то есть, функция времени продольной релаксации. Изменение z-компоненты макроскопической намагниченности подчиняется данному дифференциальному уравнению первого порядка. Этот процесс играет важную роль при наблюдении некоторых резонансных явлений, при которых макроскопическая намагниченность не поворачивается на 180° в отрицательном направлении оси z при наложении полей с малыми амплитудами — B1, а только отклоняется на малый угол α. Следовательно, даже в момент резонанса намагниченность по оси z сохраняется, поскольку система стремится сохранить нормальное больцмановское распределение путём релаксации. Также этот процесс может быть записан обратными спиновыми температурами, учитывая, что она пропорциональна ядерной намагниченности системы: dαI/dt =αL — αI/T1, где: αI — обратная спиновая температура, αL=ħ/(kБTL) — обратная температура решётки, kБ — постоянная Больцмана, TL — температура решётки, T1 — время спин-решёточной релаксации; и данное уравнение является обратным уравнению, описывающему продольную релаксацию.