
Фра́нций — радиоактивный химический элемент 1-й группы седьмого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 87.

Протакти́ний — химический элемент 3-й группы седьмого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 91.

Кю́рий — химический элемент 3-й группы седьмого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 96.

Бе́рклий — искусственно полученный радиоактивный трансурановый химический элемент группы актиноидов с атомным номером 97. Берклий не имеет стабильных изотопов, наиболее долгоживущий нуклид 247Bk имеет период полураспада 1380 лет.
Хими́ческий элеме́нт — совокупность атомов с одинаковым зарядом атомных ядер. Атомное ядро состоит из протонов, число которых равно атомному номеру элемента, и нейтронов, число которых может быть различным. Каждый химический элемент имеет своё латинское название и химический символ, состоящий из одной или пары латинских букв, регламентированные ИЮПАК и приводятся, в частности, в таблице Периодической системы элементов Менделеева.

Актино́иды (актини́ды) — семейство, состоящее из 15 радиоактивных химических элементов III группы 7-го периода периодической системы с атомными номерами 89—103.
Радиохи́мия — область химии, изучающая химию радиоактивных изотопов, элементов и веществ, законы их физико-химического поведения, химию ядерных превращений и сопутствующих им физико-химических процессов. Термин «радиохимия» был впервые введен английским химиком Александром Камероном в 1910 г. Определяющим принципом радиохимии как науки является зависимость качественных изменений радиоактивных изотопов от изменения количественного состава ядра.
Изото́пы углеро́да — разновидности атомов химического элемента углерода, имеющие разное содержание нейтронов в ядре. Углерод имеет два стабильных изотопа — 12C и 13C. Содержание этих изотопов в природном углероде равно соответственно 98,93 % и 1,07 %. Известны также 13 радиоактивных изотопов углерода, из которых один — 14C — встречается в природе. Изомерные состояния неизвестны. Углерод — лёгкий элемент, и его изотопы значительно различаются по массе, а значит и по физическим свойствам, поэтому во многих природных процессах происходит их разделение (фракционирование). Самым долгоживущим радиоизотопом является 14C с периодом полураспада 5700 лет.

Метод я́дерного га́мма-резона́нса основан на эффекте Мёссба́уэра, который заключается в резонансном поглощении без отдачи атомным ядром монохроматического γ-излучения, испускаемого радиоактивным источником.

Нейтрон-захватная терапия, или нейтронозахватная терапия — метод радиотерапии. Метод лечения рака с использованием реакций, возникающих между радиочувствительными медикаментами и нейтронами. При этом в опухоли предварительно накапливают бор, гадолиний, что повышает её чувствительность к нейтронному излучению. Затем опухоль облучают потоком тепловых нейтронов. В онкологических клиниках уже применяется терапия на основе бора. Остальные варианты находятся в фазе экспериментов.

Ле́о Си́лард — американский физик венгерско-еврейского происхождения.
Я́дерная хи́мия — раздел физической химии и химии высоких энергий — изучает ядерные реакции и сопутствующие им физико-химические процессы, устанавливает взаимосвязь между физико-химическими и ядерными свойствами вещества. Важнейшей задачей ядерной химии является выделение и идентификация радиохимическими методами продуктов ядерных реакций. В тематику исследований также входит химии горячих атомов, возникающих при ядерном распаде и имеющих избыточную кинетическую энергию, формально соответствующую температурам 104—107 К. Исследования в области ядерной химии послужили основой для Мёсбауэровской спектроскопии, как метода, широко используемого в структурной и радиационной химии, аналитической химии, химической кинетике, геохимии. Методами ядерной химии с использованием «новых атомов», и прежде всего позитрония (Ps) и мюония (Мu), изучают превращения атомов в различных химических системах — мезонная химия. Часто термин «ядерная химия» считают синонимом терминов «радиохимии» и «радиационной химии», что неверно.

Ура́н-235, историческое название актиноура́н — радиоактивный нуклид химического элемента урана с атомным номером 92 и массовым числом 235. Изотопная распространённость урана-235 в природе составляет 0,7200(51) %. Является родоначальником радиоактивного семейства 4n+3, называемого рядом актиния. Открыт в 1935 году в США Артуром Демпстером.

Непту́ний-237 — радиоактивный нуклид химического элемента нептуния с атомным номером 93 и массовым числом 237. Наиболее долгоживущий изотоп нептуния, период полураспада 2,144(7)⋅106 лет. Был открыт в 1942 году Гленном Сиборгом и Артуром Валем в результате бомбардировки урана-238 нейтронами:

Изото́пы плутония — разновидности атомов химического элемента плутония, имеющие разное содержание нейтронов в ядре. На данный момент известны 20 изотопов плутония и ещё 8 возбуждённых изомерных состояний некоторых его нуклидов. Следы плутония-244 были обнаружены в природе.
Изотопы никеля — разновидности химического элемента никеля, имеющие разное количество нейтронов в ядре. Известны изотопы никеля с массовыми числами от 48 до 80 и 8 ядерных изомеров.
Изотопы меди — разновидности химического элемента меди, имеющие разное количество нейтронов в ядре. Известны изотопы меди с массовыми числами от 52 до 80 и 7 ядерных изомеров.
Изотопы галлия — разновидности химического элемента галлия, отличающиеся разным количеством нейтронов в атомном ядре. Известны изотопы галлия с массовыми числами от 56 до 86 и 3 ядерных изомеров.
Изотопы стронция — разновидности химического элемента стронция, имеющие разное количество нейтронов в ядре. Известны изотопы стронция с массовыми числами от 73 до 105 и 6 ядерных изомеров.
Изотопы золота — разновидности химического элемента золота, имеющие разное количество нейтронов в ядре. Известны 37 изотопов золота с массовыми числами от 169 до 206 и 40 ядерных изомеров.