В этом глоссарии приведены определения основных терминов, используемых в общей топологии. Курсивом выделены ссылки внутри глоссария.
Односвязное пространство — линейно связное топологическое пространство, в котором любой замкнутый путь можно непрерывно стянуть в точку. Пример: сфера односвязна, а поверхность тора не односвязна, потому что окружности на торе, показанные красным на рисунке, нельзя стянуть в точку.
Выпуклая функция — функция, надграфик или подграфик которой является выпуклым множеством.
Дифференци́руемая фу́нкция — это функция, у которой существует дифференциал. Дифференцируемая на некотором множестве функция — это функция, дифференцируемая в каждой точке данного множества. Дифференцируемость является одним из фундаментальных понятий в математике и имеет значительное число приложений как в самой математике, так и в других естественных науках.
Категория Бэра — один из способов различать «большие» и «маленькие» множества. Подмножество топологического пространства может быть первой или второй категории Бэра.
Кривизна́ — собирательное название ряда характеристик, описывающих отклонение того или иного геометрического «объекта» от соответствующих «плоских» объектов.
Гладкая функция, или непрерывно дифференцируемая функция, — функция, имеющая непрерывную производную на всём множестве определения. Очень часто под гладкими функциями подразумевают функции, имеющие непрерывные производные всех порядков.
Голоморфная функция, иногда называемая регулярной функцией — функция комплексного переменного, определённая на открытом подмножестве комплексной плоскости и комплексно дифференцируемая в каждой точке.
Критической точкой дифференцируемой функции называется точка, в которой её дифференциал обращается в нуль. Это условие эквивалентно тому, что в данной точке все частные производные первого порядка обращаются в нуль, геометрически оно означает, что касательная гиперплоскость к графику функции горизонтальна. В простейшем случае n=1 это значит, что производная в данной точке равна нулю. Это условие является необходимым для того, чтобы внутренняя точка области могла быть точкой локального минимума или максимума дифференцируемой функции.
Дифференциа́льный опера́тор — оператор, определённый некоторым дифференциальным выражением и действующий в пространствах функций на дифференцируемых многообразиях или в пространствах, сопряжённых к пространствам этого типа.
Субдифференциал функции f, заданной на банаховом пространстве E — это один из способов обобщить понятие производной на произвольные функции. Хотя при его использовании приходится пожертвовать однозначностью отображения, он оказывается довольно удобным: любая выпуклая функция оказывается субдифференцируемой на всей области определения. В тех случаях, когда о дифференцируемости функции заранее ничего не известно, это оказывается существенным преимуществом.
Многообра́зие — локально евклидово пространство.
Кла́ссы Бэ́ра — множества математических функций, определяемые согласно классификации, введённой французским математиком Рене-Луи Бэром в 1899 году.
О́бщее положе́ние — свойство, которое выполняется почти всюду, то есть почти для всех рассматриваемых объектов. Математический термин, используемый в основном в геометрии, значение которого зависит от контекста и который применяется обычно в следующих словосочетаниях: «объекты, находящиеся в общем положении, имеют свойство S», «S есть свойство общего положения», «приведение объектов в общее положение», другими словами, между объектами отсутствуют какие-либо «особые» отношения.
Квазивыпуклая функция — обобщение понятия выпуклой функции, нашедшее широкое применение в нелинейной оптимизации, в частности, при применении оптимизации к вопросам экономики.
Теорема Александрова — классическая теорема в теории функции вещественной переменной.
Технологическое множество — понятие, используемое в микроэкономике, формализующее множество всех технологически допустимых векторов чистых выпусков продукции.
Выпуклая геометрия — ветвь геометрии, изучающая выпуклые множества, в основном, в евклидовом пространстве. Выпуклые множества возникают естественным образом во многих областях, в том числе в вычислительной геометрии, выпуклом анализе, комбинаторной геометрии, функциональном анализе, геометрии чисел, интегральной геометрии, линейном программировании, теории вероятностей.
В математике множество уровня вещественной функции f от n вещественных переменных — это множество вида