
Бе́лые ка́рлики — звёзды, состоящие из электронно-ядерной плазмы, лишённые источников термоядерной энергии и светящиеся благодаря своей тепловой энергии, постепенно остывая в течение миллиардов лет.

Ге́лиевая вспы́шка — взрывообразное начало ядерного горения гелия в звезде. Она возникает, если область, где происходит горение гелия, не может быстро охлаждаться при увеличении температуры, и тогда нагрев приводит к увеличению скорости ядерных реакций, что приводит к ещё большему нагреву вещества. Гелиевая вспышка оказывает влияние на химический состав звезды, и, в некоторых случаях, на её структуру.

Главная последовательность — стадия эволюции звёзд, а также область на диаграмме Герцшпрунга — Рассела, образованная звёздами на этой стадии, и соответствующий класс светимости.

Красные гиганты — звёзды, для которых характерны поздние спектральные классы и большие размеры и светимости, таким образом они занимают верхнюю правую часть диаграммы Герцшпрунга — Рассела. Они имеют протяжённые, разреженные оболочки и создают сильный звёздный ветер, а также часто проявляют переменность. Радиусы таких звёзд составляют 10—200 R⊙, светимости — 102 до 104 L⊙, а температуры — 3000—5000 K.
Теплота́ сгора́ния — это количество выделившейся теплоты при полном сгорании массовой или объёмной единицы вещества. Измеряется в джоулях или калориях. Теплота сгорания, отнесённая к единице массы или объёма топлива, называется удельной теплотой сгорания.

Гига́нт — тип звёзд с большим радиусом и высокой светимостью. Обычно звёзды-гиганты имеют радиусы от 10 до 100 солнечных радиусов и светимости от 10 до 1000 светимостей Солнца. Светимость таких звёзд больше, чем у звёзд главной последовательности, но меньше, чем у сверхгигантов, и в Йеркской спектральной классификации такие звёзды имеют спектральные классы II и III.

Асимптоти́ческая ветвь гига́нтов — поздняя стадия эволюции звёзд небольшой и средней массы. Звёзды на эволюционном этапе асимптотической ветви гигантов имеют низкие температуры и большие размеры и светимости. Поэтому на диаграмме Герцшпрунга — Рассела такие звёзды занимают определённую область, также называемую асимптотической ветвью гигантов. Они часто переменны, и у них наблюдается сильный звёздный ветер.
Красное сгущение — стадия эволюции звёзд небольшой массы и металличности порядка солнечной, а также область, занимаемая ими на диаграмме Герцшпрунга — Рассела. Эта стадия идёт после ветви красных гигантов и предшествует асимптотической ветви гигантов. Звёзды на ней выделяют энергию за счёт ядерного горения гелия, их светимости и температуры лежат в небольшом диапазоне. Красное сгущение состоит из звёзд населения I и является самой низкотемпературной областью горизонтальной ветви, которая в остальном занята менее массивными и менее металличными звёздами, принадлежащими населению II.

Ядерные реакции в звёздах являются их основным источником энергии. Они обеспечивают большое энерговыделение на единицу массы, что позволяет звёздам поддерживать высокую светимость в течение длительного времени. В этих реакциях образуется бо́льшая часть химических элементов, существующих в природе, — происходит нуклеосинтез. Протекание ядерных реакций возможно из-за высокой температуры в недрах звёзд, их темп зависит от температуры и плотности.

Голубые карлики — теоретический тип звёзд, в которые должны в результате эволюции превращаться маломассивные красные карлики. Согласно теоретическим расчётам, срок жизни красных карликов значительно превышает возраст Вселенной, поэтому ни один красный карлик ещё не стал голубым. Голубыми карликами должны становиться звёзды с массами от 0,08 M⊙ до примерно 0,16—0,20 M⊙. Например, красный карлик массой 0,1 M⊙ станет голубым карликом через 5,7 триллионов лет после формирования, если Вселенная сможет просуществовать столько времени. Его температура во время этой стадии превысит солнечную, но светимость не достигнет даже 0,01 L⊙.

Сверхгиганты — одни из наиболее ярких, крупных и массивных звёзд, светимость которых может в миллионы раз превышать солнечную, а радиус — в тысячи раз. Эти звёзды занимают верхнюю часть диаграммы Герцшпрунга — Рассела и составляют класс светимости I. У них наблюдается сильный звёздный ветер, практически все они переменны.

Эволю́ция звёзд в астрономии — изменение со временем физических и наблюдаемых параметров звезды из-за идущих в ней термоядерных реакций, излучения ею энергии и потери массы. Часто говорят об эволюции как о «жизни звезды», начинающейся, когда единственным источником энергии звезды становятся ядерные реакции, и заканчивающейся, когда реакции прекращаются, — у различных звёзд эволюция идёт по-разному. Согласно астрофизическим моделям, срок жизни звезды, в зависимости от начальной массы, продолжается от нескольких миллионов до десятков триллионов лет, поэтому астрономы прямо наблюдают только очень малый по сравнению с продолжительностью жизни звезды период её эволюции, на протяжении которого эволюционные изменения практически незаметны.

Горизонтальная ветвь в астрономии — это стадия эволюции звёзд небольшой массы и низкой металличности, а также область, занимаемая ими на диаграмме Герцшпрунга — Рассела. Эта стадия идёт после ветви красных гигантов и предшествует асимптотической ветви гигантов. Звёзды на ней выделяют энергию за счёт ядерного горения гелия. Светимости этих звёзд лежат в небольшом диапазоне, но их температуры сильно варьируются. В низкотемпературной области горизонтальной ветви сконцентрированы более массивные и металличные звёзды населения I, которые образуют красное сгущение, а термин «горизонтальная ветвь» в основном используется для звёзд населения II.

Горе́ние кре́мния — последовательность термоядерных реакций, протекающая в недрах массивных звёзд (минимум 8—11 солнечных масс), в ходе которой происходит превращение ядер кремния в ядра более тяжёлых элементов. Для данного процесса необходимо наличие высокой температуры (2,7—3,5⋅109 K, что соответствует кинетической энергии 230—300 кэВ) и плотности (105—106 г/см³). Стадия горения кремния следует за стадиями горения водорода, гелия, углерода, неона и кислорода; она является финальной стадией эволюции звезды за счёт термоядерных процессов. После её окончания в ядре звезды больше не остаётся доступных термоядерных источников энергии, поскольку в результате горения кремния образуются ядра группы железа, которые имеют максимальную энергию связи на один нуклон и более неспособны к термоядерным экзотермическим реакциям. Прекращение энерговыделения приводит к потере способности звёздного ядра противодействовать давлению внешних слоёв, к катастрофическому коллапсу звезды и вспышке сверхновой типа II.

Звёзды различных масс и возрастов обладают различной внутренней структурой. Модели строения звезды подробно описывают внутреннюю структуру звезды и предоставляют подробные сведения о светимости, цвете и дальнейшей эволюции звезды.
Ядерное горение лития (англ. lithium burning) — процесс нуклеосинтеза, при котором в звезде исчерпываются запасы лития. Литий обычно присутствует в составе коричневых карликов, но отсутствует в маломассивных звёздах. Звёзды, которые смогли достигнуть высоких температур (2,5 × 106 K), необходимых для начала ядерных реакций с участием водорода, быстро исчерпывают запасы лития. При столкновении лития-7 и протона образуются два ядра гелия-4. Температура, необходимая для протекания подобной реакции, немного меньше температуры, минимальной для горения водорода. Конвекция в маломассивных звёздах приводит к исчезновению лития во всём объёме звезды. Следовательно, наличие спектральных линий лития показывает, что данное небесное тело является субзвёздным объектом.
Стандартная модель Солнца — математическое представление Солнца в виде газового шара, в котором водород во внутренней области становится полностью ионизованной плазмой. Данная модель, являющаяся сферически-симметричной квазистатической моделью звезды, обладает структурой, описываемой несколькими дифференциальными уравнениями, выводимыми из основных принципов физики. Данная модель имеет ограничения в виде граничных условий, а именно светимости, радиуса, возраста и состава Солнца, которые определены достаточно точно.
Тепловое время, или время Кельвина-Гельмгольца , — приблизительная оценка времени, которое понадобилось бы звезде, чтобы выделить, излучить полную кинетическую энергию при современной светимости. Наряду с ядерным и динамическим временем, тепловое время используется для оценки времени, в течение которого данная звезда останется на конкретной стадии эволюции при соблюдении определённых условий. В действительности время жизни звезды гораздо больше, чем значение теплового времени, поскольку после завершения горения водорода может начаться горение гелия, а затем — горение углерода.

Голубая петля — стадия эволюции звёзд промежуточной массы, в ядрах которых происходит горение гелия. В это время поверхность звезды сначала становится горячее, а затем снова охлаждается, и звезда описывает петлю на диаграмме Герцшпрунга — Рассела. В результате такие звёзды могут пересекать полосу нестабильности и наблюдаться как классические цефеиды. Этот этап эволюции следует после ветви красных гигантов и завершается переходом на асимптотическую ветвь гигантов.