Теория чисел или высшая арифметика — раздел математики, первоначально изучавший свойства целых чисел. В современной теории чисел рассматриваются и другие типы чисел — например, алгебраические и трансцендентные, а также функции различного происхождения, которые связаны с арифметикой целых чисел и их обобщений.
Диофа́нтово уравнение — это уравнение вида

p-адическое число — теоретико-числовое понятие, определяемое для заданного фиксированного простого числа p как элемент расширения поля рациональных чисел. Это расширение является пополнением поля рациональных чисел относительно p-адической нормы, определяемой на основе свойств делимости целых чисел на p.

Куби́ческое уравне́ние — алгебраическое уравнение третьей степени, общий вид которого следующий:

Деся́тая пробле́ма Ги́льберта — одна из 23 задач, которые Давид Гильберт предложил 8 августа 1900 года на II Международном конгрессе математиков. Она состоит в нахождении универсального метода определения разрешимости произвольного алгебраического диофантова уравнения. Доказательство алгоритмической неразрешимости этой задачи заняло около двадцати лет и было завершено Юрием Матиясевичем в 1970 году.

Конгруэ́нтное число — натуральное число, равное площади прямоугольного треугольника со сторонами, длины которых выражаются рациональными числами. Более общее определение включает все положительные рациональные числа с этим свойством.
Теория чисел — это раздел математики, занимающийся преимущественно изучением натуральных и целых чисел и их свойств, часто с привлечением методов математического анализа и других разделов математики. Теория чисел содержит множество проблем, попытки решения которых предпринимались математиками в течение десятков, а иногда даже сотен лет, но которые пока так и остаются открытыми. Ниже приведены некоторые из наиболее известных нерешённых проблем.
Гипотеза Ландера — Паркина — Селфриджа в теории чисел является предположением об условиях существования решений в натуральных числах уравнений для сумм одинаковых степеней неизвестных. Эти уравнения являются обобщением уравнений великой теоремы Ферма.

В теории чисел задача Знама спрашивает, какие множества k целых чисел имеют свойство, что каждое целое в множестве является собственным делителем произведения других целых чисел в множестве плюс 1. Задача Знама названа по имени словацкого математика Стефана Знама, который предложил задачу в 1972, хотя другие математики рассматривали похожие задачи приблизительно в то же время. Близкая задача не требует, чтобы делитель был собственным делителем, и называется несобственной задачей Знама.
Теория диофантовых приближений — раздел теории чисел, изучающий приближения вещественных чисел рациональными; назван именем Диофанта Александрийского.

Практичное число или панаритмичное число — это положительное целое число n, такое что все меньшие положительные целые числа могут быть представлены в виде суммы различных делителей числа n. Например, 12 является практичным числом, поскольку все числа от 1 до 11 можно представить в виде суммы делителей 1, 2, 3, 4 и 6 этого числа — кроме самих делителей, мы имеем 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1 и 11 = 6 + 3 + 2.
Теорема Шура — утверждение в теории Рамсея о том, что при любой раскраске натуральных чисел в конечное число цветов найдётся одноцветное решение уравнения
. Названа в честь её автора, Исая Шура.

Сумма трёх кубов — в математике открытая проблема о представимости целого числа в виде суммы трёх кубов целых чисел.
Уравнение Рамануджана – Нагеля в теории чисел — уравнение следующего вида:


Уравнения Баргмана — Вигнера — релятивистски инвариантные многокомпонентные спинорные уравнения движения свободных частиц c ненулевой массой и произвольным спином.